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TossNet: Learning to Accurately Measure and Predict
Robot Throwing of Arbitrary Objects in Real Time

With Proprioceptive Sensing
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Abstract—Accurate measuring and modeling of dynamic robot
manipulation (e.g., tossing and catching) is particularly challeng-
ing, due to the inherent nonlinearity, complexity, and uncertainty
in high-speed robot motions and highly dynamic robot–object
interactions happening in very short distances and times. Most
studies leverage extrinsic sensors such as visual and tactile feedback
toward task or object-centric modeling of manipulation dynamics,
which, however, may hit bottleneck due to the significant cost and
complexity, e.g., the environmental restrictions. In this work, we in-
vestigate whether using solely the on-board proprioceptive sensory
modalities can effectively capture and characterize dynamic ma-
nipulation processes. In particular, we present an object-agnostic
strategy to learn the robot toss dynamics of arbitrary unknown ob-
jects from the spatio-temporal variations of robot toss movements
and wrist-force/torque (F/T) observations. We then propose Toss-
Net, an end-to-end formulation that jointly measures the robot toss
dynamics and predicts the resulting flying trajectories of the tossed
objects. Experimental results in both simulation and real-world
scenarios demonstrate that our methods can accurately model the
robot toss dynamics of both seen and unseen objects, and predict
their flying trajectories with superior prediction accuracy in nearly
real-time. Ablative results are also presented to demonstrate the
effectiveness of each proprioceptive modality and their correlations
in modeling the toss dynamics. Case studies show that TossNet can
be applied on various real robot platforms for challenging tossing-
centric robot applications, such as blind juggling and high-precise
robot pitching.

Index Terms—Data-driven modeling, dynamic manipulation,
proprioceptive sensing, trajectory prediction.

Manuscript received 29 October 2023; revised 7 April 2024; accepted 28 May
2024. Date of publication 18 June 2024; date of current version 27 June
2024. This paper was recommended for publication by Associate Editor C.
Della Santina and Editor J. Bohg upon evaluation of the reviewers’ comments.
(Corresponding author: Yu Zheng.)

Lipeng Chen, Yizheng Zhang, Longfei Zhao, and Yu Zheng are with the Ten-
cent Robotics X, Shenzhen 518057, China (e-mail: lipengchen@tencent.com;
yizhengzhang@tencent.com; longfeizhao@tencent.com; petezheng@tencent.
com).

Weifeng Lu is with the Department of Biomedical Engineering, City Univer-
sity of Hong Kong, Hong Kong, and also with the Tencent Robotics X, Shenzhen
518057, China (e-mail: weifenglu2-c@my.cityu.edu.hk).

Kun Zhang is with the Department of Electronic and Computer Engi-
neering, Hong Kong University of Science and Technology, Hong Kong,
and also with the Tencent Robotics X, Shenzhen 518057, China (e-mail:
kun.zhang@connect.ust.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TRO.2024.3416009, provided by the authors.

Digital Object Identifier 10.1109/TRO.2024.3416009

NOMENCLATURE

Symbol Meaning.
X Vector of multimodal robot proprioceptive percep-

tions.
Y Object’s flying trajectory.
x Position and orientation of the robot end-effector.
ẋ Translational and angular velocity of the robot end-

effector.
f Force/torque (F/T) value perceived by the F/T sensor.
m Number of perception points.
T Temporal interval between every two perception

points.
e Learned implicit representation of robot toss dynam-

ics.
p Position of the object.
o Orientation of the object parameterized in angle-axis.
p̂ Predicted position of the object.
ô Predicted orientation of the object.
R Orientation of the object parameterized in rotation

matrix.
r Robot’s common reference frame.
b Prescribed body frame of the object.
b′ Mock body frame of the object for proprioceptive

tossing.
g Prescribed grasp frame.
M Object’s mass.
I Object’s moment of inertia about the CoM.
v Translational velocity of the object.
ω Angular velocity of the object.
F Total force acting on the object’s CoM.
τ Total torque acting on the object’s CoM.
θ Model weights to be learned during training.

I. INTRODUCTION

ROBOT manipulation has been gradually shifting from
kinematic, static, and quasistatic to more dynamic ap-

plications, thanks to recent advances in robot actuation and
perception [1], [2], [3]. One typical scenario of dynamic manip-
ulation is object tossing, which endows robots with the extrinsic
dexterity to reorient [4], [5], regrasp [6], [7], [8], or transport
objects [9], [10], [11] by the delicate exploit of toss dynamics.
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Fig. 1. Learning from the robot’s sensation of tossing. Like the human’s ball
sense, we present TossNet, an object-agnostic learning approach that leverages
solely the on-board proprioceptive sensory modalities, such as spatio-temporal
robot motions and F/T observations, to accurately perceive the characteristics
of robot tossing of arbitrary unknown objects and predict their entire flying
trajectories in real-time.

Fig. 2. Dependence of toss dynamics on robot grasps. Even if the robot tosses
a same object with the same toss movements, different robot grasps on the object
will produce different flying trajectories of the tossed object.

However, the underlying difficulties of accurately measuring,
sensing, and estimating dynamic manipulation, particularly the
motion dynamics of manipulated objects, still remain as one of
the most significant barriers for these dynamic applications to
come into real practices [1], [2], [12]. Therefore, we investigate
herein the use of solely the intrinsic proprioceptive sensory
modalities, such as the observed spatio-temporal robot motion
and force/torque (F/T) variations, to achieve a lightweight but ef-
fective and accurate modeling strategy of dynamic manipulation.
As shown in Fig. 1, we focus on the robot tossing of arbitrary
unknown rigid objects, a harder class of dynamic manipulation
instances. We propose TossNet, an end-to-end formulation that
jointly learns the characteristics of robot tossing of arbitrary
objects and predicts the resulting flying trajectories of tossed
objects with proprioceptive sensory observations in real-time.

Robot tossing by nature consists of continuous and highly
dynamic interactions among the robot, the tossed object, and
the environment (e.g., air drag). Modeling the toss dynamics
accordingly requires accurately measuring not only the relevant
physical properties of involved agents, e.g., the inertia and mass
distribution of the tossed object, but also the characteristics of
their interactions, such as the robot toss movement and the grasp
on the tossed object. For example, as shown in Fig. 2, if a robot
grasps an object from different locations, the same robot toss
movement can produce entirely different flying trajectories of
the tossed object. Not uncommonly, as shown in Fig. 3, the robot
grasp can also displace from the initial location progressively

Fig. 3. Displacement of a robot grasp during a toss. The robot’s grasp on the
object can displace dynamically during tossing due to the accelerated tossing
motion and the limited frictional forces. A subtle slip of robot grasp on the tossed
object can result in entirely different object trajectories.

during tossing, e.g., the object may slip within the robot gripper
due to the accelerated robot motion and the limited friction
forces. Such variations are subtle and highly complex due to
the close and strong robot–object interactions, and thus hard
to be captured with conventional exteroceptive sensory solu-
tions. For example, visual sensors [13], [14], [15], despite being
lightweight and easy to deploy, are frequently confronted with
difficulties and bottlenecks, e.g., severe noises and occlusion,
particularly in tightly-coupled and environment-constrained ap-
plications. Recent studies have also been attempting the aug-
mented proprioceptive sensory modalities, such as tactile and
visuotactile sensing [16], [17] for dynamic manipulation. Even
though promising results have been obtained, e.g., for contact
modeling [8], [18], slip detection [19], [20], and physical prop-
erties reasoning [8], [21], the underlying complexity and cost in
fabrication, calibration, and deployment limit their applications
to only specific tasks in well-controlled environments [22].
There still lacks a lightweight and reproducible strategy to
accurately capture and model dynamic manipulation.

Predicting the flying trajectory of a rigid object, on the other
hand, has been well addressed using the analytical model of rigid
dynamics, and/or as nonlinear regression problems with visual
observations [23], [24], [25], [26]. Despite significant progress,
vision-based methods typically rely on the historical visual
observations of the object’s state to recognize and predict its
follow-up trajectories. Their efficacy and effectiveness heavily
hinge on the quality and duration of the historical observations.
Hence, these methods usually require the use of multiple high-
speed cameras mounted externally to capture the entire object
trajectory within their field of view. In addition, many of these
approaches rely on prior knowledge about the tracked objects,
such as their physical properties, to ensure accurate predictions.
In this context, while these methods may be well-suited for track-
ing objects over long distances and durations, such as catching
a far-flying human-tossed object [9], [25], [26], [27], they are
frequently confronted with multiple practical barriers when it
comes to tracking and predicting the motions of robot-tossed
objects. First, occlusions and impairments in visual observa-
tions can hardly be avoided in robot-centered environments,
particularly during dynamic and rapid movements. Second, most
tossing-centric applications, such as robot juggling, typically
happen over very short distances and periods, where it is chal-
lenging for vision-based methods to gather a sufficient amount of
historical visual observations to ensure accurate and high-quality
predictions. Third, most tossing-centric applications are also
time-sensitive. For example, robot juggling requires real-time
and accurate predictions of the object’s movements, so that
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the robot can have enough time to track and catch the flying
objects. However, balancing the need for an ample history of
visual observations with the requirement for real-time prediction
efficiency presents a dilemma for vision-based methods, as they
have to continuously process the visual streams to update the
predictions of object trajectories. Currently, there is still a lack
of an efficient and reliable method for predicting object motions
in dynamic robot manipulation.

We envision from the sequential nature of robot tossing,
proposing that the flying dynamics of a robot-tossed object
depends mainly on its physical properties and the characteristics
of the preceding robot tossing process. In other words, while
ignoring the effects of air drag, if the robot toss dynamics can
be accurately captured, the resulting flying trajectory of the
tossed object can be inferred directly even without visually
observing the object in flying. Such an inference process has
been commonly applied in human dynamic manipulation: think
of how we can, for example, play basketball with foresight.
With proper training and practice, an experienced player can
anticipate the exact flying trajectory of a basketball (even at
the first contact) immediately after holding and tossing it out.
This is essentially achieved by the so-called ball sense [28], a
psychophysical sensation and judgment of the result of a shot
or a movement the player develops from lengthy training and
practice. Further, even though visual observations can be used,
the human relies mainly on the proprioceptive sensation, e.g.,
the tactile touch, arm muscle tension, and tossing strength, to
perceive the properties of the manipulated basketball and the
characteristics of a tossing movement. With such an implicit
understanding of basketball tossing, the human can reason the
result of a toss effortlessly and accurately. In other words,
the player learns a model of basketball tossing, which maps
from the proprioceptive sensations of tossing a basketball to its
resulting fly trajectories. Moreover, the sensation/modeling of
the tossing and the inference of the basketball trajectory, in fact,
happen almost synchronously and are done immediately after
the basketball is tossed out.

In this light, we propose and address the joint task of measur-
ing robot tossing of arbitrary unknown rigid objects and forecast-
ing the subsequent object flying trajectories (see Fig. 1). Inspired
by the human’s decision process, we build an object-agnostic
neural representation of robot tossing of arbitrary objects. It
leverages only the multimodal robot proprioceptive features,
including the robot motion and the wrist F/T observations.
We present TossNet, an end-to-end deep sequence-to-sequence
(S2S) neural network, which models and maps the robot toss
dynamics to an accurate estimation of the resulting object flying
trajectory in real-time. We envision that the proposed capability
can further boost the robot’s dexterity and versatility in both
industrial and domestic applications, and help lead to more
capable and collaborative robots.

The proposed TossNet relies on two major components,
namely, a set of encoders and a decoder.

1) The encoders are built with long short-term memory
(LSTM) modules [29], [30], [31]. Each encoder takes a
sequence of single- (or cross-)modal proprioceptive obser-
vations of the robot tossing process of an unknown object

as inputs to learn the singular (or correlated) features.
They are then applied together to build an implicit neural
representation of the toss dynamics. Compared with vision
or other intrinsic sensory modalities (e.g., tactile), our
methods employ only the on-board and well-tested motion
encoders and the wrist F/T sensor, making our methods
more lightweight and robust, particularly for dynamic
robot applications in cluttered and unstructured environ-
ments. We demonstrate that our methods can obtain an
accurate approximation of the toss dynamics by extracting
and fusing multiple single-modal proprioceptive features.
In parallel, while every single modality of the propriocep-
tive observations expresses the toss dynamics to a certain
level, we investigate and confirm that the spatio-temporal
correlations among different sensory modalities can also
contain critical features that facilitate the modeling of
toss dynamics. We extract such correlated features using
a fine-grained fusion strategy that further improves the
modeling accuracy of toss dynamics. Ablation studies
are also presented to demonstrate the effectiveness of
each modality and their correlations in modeling the toss
dynamics.

2) The decoder is also built with LSTM modules, which
leverage solely the above learned toss dynamics to extract
the flying trajectory of the tossed object in an autoregres-
sive manner. We propose a novel strategy to parameterize
the object trajectories consistently in proprioceptive robot
tossing. It allows our method to correctly associate the
flying trajectories of arbitrary unknown objects with the
learned toss dynamics from proprioceptive perceptions.
We demonstrate that our method is capable of predicting
the object trajectory much more accurately than state-of-
the-art methods on a variety of toss scenarios. Moreover,
similar to the human’s decision process, our method uses
only on-board proprioceptive sensors, and can predict the
entire long-duration object trajectories in nearly real-time:
1) We construct the proprioceptive encoders with LSTM
modules, which enables our method to learn the toss
dynamics at runtime and in parallel with robot tossing.
2) Our decoder does not depend on the prior knowl-
edge of tossed objects or the visual observations of the
object’s flying trajectories. Instead, our method predicts
the entire flying trajectory of a tossed object from solely
the learned toss dynamics, and therefore can be done
in one shot and immediately upon the robot tossing in
real-time. Such features make our method an ideal com-
pensation to vision-based methods toward more accurate
and efficient prediction of object motions, especially in
dynamic robot manipulation.

Experimental results show that our methods can be employed
on various real robot platforms, and are capable of accurately
modeling their toss dynamics on both seen and unseen objects
and predicting their seconds-long trajectories in only tens of
milliseconds. We demonstrate that our methods can be used in
a variety of tossing-centric robot applications, including blind
juggling and high-precision pitching. We hope that our simple
yet effective pipeline of using proprioceptive sensing could serve
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as a strong paradigm to model the robot toss dynamics, and also
contribute to other dynamic manipulation modalities, e.g., robot
pushing and batting [1], [2], [3].

The rest of this article is organized as follows. Section II
reviews the related work. Section III gives a detailed description
of the proposed method (TossNet) and a novel strategy to unify
the parameterization of object motions in proprioceptive robot
tossing. The experimental results are presented in Section IV
to evaluate the proposed methods. Finally, Section V concludes
this article and discusses some future work.

II. RELATED WORK

Modeling of Toss Dynamics: Robot tossing by nature relies
mainly on high-speed and time-varying physical interactions
between the robot and object, and therefore accurately sensing
and modeling of toss dynamics is challenging [1], [3], [12].
Many previous studies devoted to tossing and other similar
instances [32], [33], [34], [35] assume the physical properties of
all agents are known a priori, and approximate the task dynamics
based on human insights into physics like the frictional rigid
body dynamics [36], [37], [38], [39]. However, in most cases
of interest, these analytical methods often observe considerable
limitations in model accuracy and generalization: A complete
knowledge of dynamics is never a realistic assumption, and
standard analytical models are only rough approximations due to
the unknown nonlinearities inherent in involved agents and their
interactions, e.g., the wear and tear of robot end-effector from
repeated tossing. Recently, learning models have been proven
to be promising in compensating for this lack of nonlinearities
in analytical dynamics. These methods are largely task-centric,
which address unknown nonlinearities at various levels by
learning straightforwardly at least a partial or supplementary
model using regression techniques. A large body of previous
works have considered direct or augmented modeling of physical
properties of each individual agent [21], [40], [41], [42] and
their contacts [43], [44], [45], [46] in dynamic manipulation
tasks. However, this line of work requires identifying exactly
the physical parameters of importance or the very source of
unknown nonlinearities in dynamics, which can be quite tricky.
In contrast, some early studies have demonstrated the dynamics
can be directly learned at the task level to reduce learning degrees
of freedom [47], [48]. This line of methods typically builds a
complete or residual mapping from robot control parameters
to future task states [11], [49], [50], and therefore provides a
broader range of data-driven corrections that can compensate for
noisy observations and dynamics that are not explicitly modeled.
Our work is similar in spirit to these, where we formulate the
problem of modeling toss dynamics as to learn a task-dependent
mapping from the multimodal proprioceptive observations to a
low-dimensional task embedding (see Section III).

Further, rather than modeling the robot toss dynamics di-
rectly, a large majority of existing studies focus on the task
of target-throwing, i.e., throwing an object into a prescribed
target container or toward a specific landing location. This line of
research typically involves building an inverse dynamics model
that maps the object’s 2-D landing targets to the robot’s control

commands [11], [51], [52], [53]. For example, the recent work
by Zeng et al. [11] has proposed TossingBot, a rigid robot system
that can grasp from a clutter of random objects and throw them
into a set of prescribed target boxes. The proposed method
leverages a precaptured RGB-D observation before robot toss-
ing to approximate the object-centric dynamics, and maps the
object’s 2-D landing locations (i.e., planer positions) to the
robot’s throwing commands (i.e., release velocities). Similarly,
another two recent works by Bianchi et al. [51], [52] proposed
an inverse dynamics model that can control a soft robot arm
to toss four spherical objects into a set of predefined target
boxes. This line of works can be particularly efficient and useful
in many real-world robot applications, such as cleaning and
sorting [54], [55]. Different from these studies, our work can be
broadly regarded as a forward dynamics model that leverages
multimodal proprioceptive observations to capture and model
the robot tossing of arbitrary unknown objects, and predict
their entire 6-D flying trajectories in real-time. Compared to
previous methods, our approach showcases a blend of generality,
versatility, reliability, and accuracy in handling the robot tossing
of arbitrary unknown objects. As demonstrated in Section IV-D,
our approach can tackle a broader range of more complex and
challenging tossing-centric robot tasks, including precise pitch-
ing and blind juggling, surpassing the capabilities demonstrated
in previous works.

Sensing of Robot Tossing: A variety of sensors have been
applied in the sensing and estimation of dynamic manipula-
tion, which can be roughly classified into proprioceptive and
exteroceptive modalities [12]. Exteroceptive sensory modalities
like visual, proximity, and tactile [6], [22], [56], [57], [58],
typically provide observations on the states of external agents,
which may often suffer from impaired and noisy observation by
unstructured environments, and observe significant complexity
and difficulties in sensing dynamic manipulation. For example,
tactile sensors rely on delicate deployment, laborious calibra-
tion, and postprocessing. Proprioceptive sensors like F/T, on
the other hand, observe directly physical states of the robot,
such as position, velocity, and motor torque, and therefore,
are well suited for modeling interactions in more dynamic and
robot-centric manipulation [5], [59], [60], [61]. For example,
Homberg et al. [61] presented a soft hand capable of detecting the
hand configurations and identifying manipulated objects using
proprioceptive sensors, such as resistive force and bend sensors.
A recent work by Lloyd and Lepora [62] presented a hybrid
method for reactive control of goal-driven robot pushing, which
employs both tactile feedback to predict the states of the object
in pushing, and robot proprioceptive feedback to perceive the
states of the robot end-effector. In this regard, we propose to
use historic observations of robot motion and F/T information
to capture toss dynamics (see Section III-A).

Predicting Trajectory of Fast-Flying Objects: It has been
long recognized as a fundamental problem in robotics, which
for example allows robots to catch [4], [63], [64], bat [65],
[66], and regrasp objects [6], [67] dynamically. Theoretically,
rigid body dynamics can be applied to compute the object
trajectory, e.g., using recursive Newton–Euler equations [68],
[69], [70]. However, these closed-form solutions usually require
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accurate knowledge of physical properties (e.g., mass, moment
of inertia, position of CoM, etc.) and initial movement state
(e.g., initial position, velocity, etc.) of objects that are difficult
to estimate. We compare our method with analytical physics in
Section IV-B. Many previous systems devoted to interacting with
fast-moving objects assume a known model of object motion
dynamics, e.g., simple ballistic and parabolic motion, and fit
and estimate unknown model parameters from a small number
of throwing demonstrations [23], [24], [25]. This line of methods
has achieved satisfactory prediction accuracy, which, however,
is mostly limited to a narrow range of simple objects like balls,
and focused solely on their translational trajectories. Data-driven
learning of motion dynamics, on the other hand, alleviates the de-
pendency on predefined analytical models and prior knowledge
of objects. For example, the seminal works by Kim et al. [26],
[63] learnt a second-order dynamical system with regression
techniques like support vector regression and Gaussian mix-
ture to model dynamics of uneven free-flying objects, such as
bottle and hammer. We compare our method with this line of
methods, particularly Gaussian process regression (GPR) [71]
in Section IV-B. More recently, deep neural networks (DNN),
e.g., LSTM and CNN have been extensively applied to learn
nonlinear dynamics of moving objects with high accuracy [72].
In this paradigm, a model of object dynamics is first trained
offline from demonstrations in a supervised manner, which then
tracks and predicts the motion of arbitrary objects recursively
from online visual observations [73], [74], [75].

Our work also uses deep learning techniques for predicting
flying trajectories of random unknown objects. However, rather
than building a direct model of object dynamics from visual
observations, we learn a forward mapping from toss dynamics
to object dynamics. In addition to higher prediction accuracy,
building such a mapping brings multiple benefits. First, our
method predicts the complete flying trajectory of an arbitrar-
ily tossed object all at once and immediately after the object
is released. This feature makes our method well-suited for a
range of time-sensitive applications, such as robot catching of
fast-flying objects and blind juggling [39], [63]. Second, as noted
previously, most previous prediction methods benefit from direct
accurate observations of object states in flight, which on the
other hand, necessitates the use of exteroceptive motion capture
sensors, e.g., high-speed stereo cameras [76]. This limits the
applications of these methods to wide empty spaces, where
unimpaired and sufficient observations can be ensured [27], [77],
[78]. In contrast, our method does not require prior knowledge
or any observations of object dynamics, and thus can be more
reliable, lightweight, and robust.

III. PROPOSED METHOD

We formulate the task of predicting the flying trajectory of an
arbitrary unknown rigid object tossed by the robot (see Fig. 4), as
to learn a joint function φθ : X → Y , which takes a collection of
multimodal robot proprioceptive perceptions X during tossing
as inputs to model the toss dynamics, and then decodes the
resulting object flying trajectory Y starting from the moment
(t = 0) that the robot releases the object.

Fig. 4. Problem definition. Our method takes a collection of multimodal robot
proprioceptive observations X = {{xt}m1

i=0, {ẋt}m2
i=0, {f t}m3

i=0} perceived at
the robot tossing stage as inputs to model the toss dynamics, and then outputs the
resulting object flying trajectory Y = {(pr

t,o
r
t)}nj=1 starting from the moment

(t = 0) that the robot releases the object.

A. Toss Dynamics Model With Multimodal Proprioceptive
Observations

Our method first builds a model of toss dynamics from the
robot’s multimodal proprioceptive perceptions during tossing
as follows:

e = φtoss(X ) (1)

where the proprioceptive observations X record the historical
spatio-temporal variations of the robot tossing motions and 6-D
F/T values perceived at the robot tossing stage. The embedding
vector e represents the learned toss dynamics characterized
mainly by the robot tossing movements, the physical proprieties
of the tossed object, and the robot–object interactions. We detail
the role of each proprioceptive modality below in measuring the
toss dynamics.

Consider, a robot tosses a random unknown object (see Fig. 4).
The history of the robot’s toss movements, such as the temporal
variations of the robot’s position and velocity, directly reveals
the motion characteristics of the toss action. Meanwhile, from
the perspective of the object’s flying dynamics, since the object
is kinematically connected to the robot before the robot releases
its gripper, the robot’s toss movement largely decides the initial
flying state of the tossed object. For example, while ignoring the
effects of the robot grasp and physical properties of the object
(e.g., the location of the object CoM), the initial position and
velocity of the object at the release point (t = 0) are roughly
equal to those of the robot end-effector.

In this regard, our method first extracts the motion charac-
teristics of the toss action from the historical observations of
the robot’s position and velocity at the robot tossing stage. Our
method takes two temporal sequences, {xt}m1

i=0 and {ẋt}m2
i=0,

t = (i−m1/2)T1/2, wherext ∈ SE(3)denotes the position and
orientation, and ẋt ∈ R

6 denotes the translational and angular
velocity of the robot end-effector at the time t.m∗ and T∗ denote
the number of sampling points for perception and the temporal
interval between every two neighboring points, respectively.
m∗T∗ thus decides the observation duration of the correspond-
ing sensory modality. Note that the robot motion can also be
encoded by the movements of arm joints, which is related to
that of the robot end-effector by forward kinematics. However,
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Fig. 5. F/T variations of different robot toss actions exhibit distinct spatio-
temporal profiles. Spatio-temporal F/T variations can quantitatively perceive the
object properties and interaction characteristics of different robot toss actions,
e.g., the robot grasp and movements. (a) and (b) Two toss actions which differ
only in the grasp locations on the object. Arrowed arcs indicate the moving
direction and path of the robot end-effector during tossing. (c) F/T variations of
the above two toss actions in ten runs: Blue curves represent the F/T variations
of Toss One and the pink curves represent those of Toss Two. Shaded region
represents the deviation, and the solid curve represents the mean of ten runs of
each toss action.

from a perspective of learning efficiency, we use the temporal
observation of the end-effector kinematics directly.

In addition to the motion characteristics, our method leverages
the F/T perceptions to capture and compensate for the variations
of toss dynamics inherited from the physical properties of the
tossed object and the robot–object interactions, particularly the
robot grasps. We employ a wrist-mounted 6-D F/T sensor be-
tween the robot arm and the end-effector (see Fig. 4) to capture
the F/T variations at the robot tossing stage. The F/T variations
of different robot toss actions exhibit distinct spatio-temporal
profiles. Taking Fig. 5 for example, different robot grasps on a
same object lead to quite different F/T variations.

Our method takes the temporal sequence {f t}m3
i=0, where

f t ∈ R
6 denotes the F/T value at the time t and t = (i−m3)T3.

Note the F/T observations can also perceive the robot motion
characteristics, as the displacement and acceleration of the
robot end-effector also affect the value of the connected F/T
sensor. In this regard, the robot motion and F/T observations
are spatio-temporally correlated, while such correlations can
potentially facilitate the modeling of robot tossing. We present
experimental results that further evaluate the effectiveness of
each above sensory modality and their correlations on modeling
the robot toss dynamics in Section IV-C.

Leveraging F/T for dynamic manipulation perception is
promising. First, F/T perception has been widely recognized
as an efficient, lightweight, and reliable modality to perceive
interaction dynamics [79]. In addition, the F/T sensors, as
standardized sensory tools, are accessible on most robot sys-
tems, allowing our methods to be easily transferred to different
robots and other dynamic manipulation scenarios, e.g., robot
pushing [80]. We provide experimental results that show our
methods can be successfully applied on different robot systems
for challenging tossing-centric applications in Section IV-D.

B. Object Flying Trajectory Parameterization and Prediction

Our method then learns another function that directly maps
the learned feature of toss dynamics e to the flying trajectory Y
of the tossed object as follows:

Y = φobj(e) (2)

which in turn depends on how the object trajectory Y is param-
eterized to correctly formulate the above mapping, particularly
when the toss dynamics e is captured from only the robot’s
proprioceptive perception.

Trajectory Parameterization: Our method uses a mock body
frame attached to the object at each toss action to parameterize
the object’s flying trajectories in proprioceptive robot tossing.
Conventionally, the complete pose of a rigid object can be pa-
rameterized as the translation and rotation of a predefined body
frame w.r.t. a reference frame. However, it can happen that differ-
ent object trajectories can be mapped to the same proprioceptive
robot features or vice versa, if they are parameterized with
random body frames. It gives rise to the learning inconsistency
between the robot toss dynamics learned from proprioceptive
observations and the parameterized object’s flying trajectories.

There are two reasons accounting for such inconsistency in
proprioceptive robot tossing. On the one hand, the body frames
(i.e., their origins and orientations) of different objects can
be assigned w.r.t. different reference conventions. It, therefore,
leads to inconsistent parameterization of the object trajectories.
Take the example in Fig. 6(a), consider two different objects with
identical physical properties of importance (e.g., mass, CoM,
and moment of inertia). If they are applied under a same robot
toss action (i.e., same robot grasp and toss movements), their
flying motions under the action are supposed to be identical.
Meanwhile, the perceived robot motions and F/T variations for
such two actions are also identical, giving correctly a same
toss dynamics learned by (1). However, if their body frames
(dashed frames) are assigned differently, their parameterized
trajectories (dashed curves) will be different, leading to the
so-called inconsistency.

On the other hand, even if the object body frames are as-
signed w.r.t. a same reference convention, there can still exist
inconsistencies between the learned toss dynamics and the object
trajectories. For example in Fig. 6(b), consider a symmetric and
uniformly-distributed object, if the robot tosses the object with
the same toss movements but grasps it from different sides (indi-
cated by the letter “A”), the proprioceptive observations (and thus
the learned toss dynamics) for such two robot toss actions will
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Fig. 6. Learning inconsistency in proprioceptive robot tossing. Parameterizing the object trajectory with the conventional body frame (the dashed one) can give
rise to inconsistency between the robot toss dynamics learned from the proprioceptive observations and the parameterized object flying trajectories. The solid
and dashed curves represent the same object trajectory but are parameterized with the mock body frame and a conventional body frame, respectively. (a) For
two different objects with identical physical properties of importance (e.g., mass, CoM, and moment of inertia), if they are assigned with different body frames
(dashed frames), a same toss action (and thus the same learned toss dynamics) will be mapped to differently parameterized object trajectories (dashed curves).
(b) For a symmetric and uniformly-distributed object, if the robot tosses the object with the same toss movements but grasps it from different sides (indicated by
the letter “A”), the proprioceptive observations for such two toss actions will be identical. However, the object trajectories (dashed curves) parameterized with
the conventional body frame are different. For both cases, the object trajectories parameterized with the mock body frames (solid curves) are consistent with the
learned proprioceptive robot toss dynamics.

be identical. However, the obtained object trajectories (dashed
curves) parameterized with the conventional body frame (dashed
frame) are different, resulting in the inconsistency as well. In
fact, the robot toss dynamics learned from proprioceptive obser-
vations determines the relative trajectory of the tossed object,
i.e., the object’s spatial displacements from its initial pose at the
robot releasing point, rather than its absolute trajectory defined
w.r.t. the body frame. Therefore, to correctly formulate the
mapping (2) for proprioceptive robot tossing, the initial object
pose (t = 0) should be removed from the parameterized flying
trajectory.

To address the consistency issue, i.e., to make the model in (2)
learnable, we assume for each tossed object a mock body frameb′

located at the object’s CoM. The object position pr
t ∈ R

3 at time
t can then be parameterized as the translational displacement of
the mock body frame w.r.t. the robot frame r. Note, however,
our model is agnostic to the object CoM (and all other physical
properties), but can infer it accurately from the learned robot toss
dynamics. Assigning the mock body frame b′ to the object CoM
provides two major benefits. First, the object CoM is unique and
its motion pattern is consistent among different objects. Second,
the motion dynamics of the object CoM is relatively simple and,
therefore, more friendly to the learning methods.

Simply assigning the object body frame to its CoM, however,
can still be confronted with the learning inconsistency. For
example, even if the dashed body frame in Fig. 6(b) is located at
the exact location of the object CoM, the parameterized object
trajectories will still be different in the object orientation. To
further address the orientation consistency, as shown in Figs. 7
and 8, for each arbitrary object and at the beginning of each toss
action of the object, we assign the mock body frame b′ (solid
frame) with a fixed initial toss orientation Rg

b′ ∈ SO(3) w.r.t. the
robot gripper.1 This is to eliminate the inconsistency in the object
orientation due to the body frame and initial object pose. In this
way, the object trajectories parameterized with the mock body
frame b′ are consistent with the learned proprioceptive robot toss

1Initial orientation in practice is defined w.r.t. the frame of F/T sensor, which
is kinematically connected to the robot gripper.

Fig. 7. Consistent trajectory parameterization in proprioceptive robot tossing.
We assign a mock body frame b′ for each toss action to eliminate the learning
inconsistency in proprioceptive robot tossing. The mock body frame b′ is located
at the object CoM, and with a constant initial toss orientation R

g
b′ w.r.t. the robot

gripper g for all toss actions of arbitrary objects.

Fig. 8. Consistent trajectory parameterization with a mock body frame. Robot
can grasp an object with different grasp poses w.r.t. the gripper, whereas the mock
body frame (the solid one)b′ is always aligned identically w.r.t. the robot gripper.
If there exists a predefined body frame (the dashed one) b, the object trajectory
w.r.t. the body frame can then be obtained with a constant transformation matrix
Tb′

b .

dynamics. For example, the object trajectories parameterized
with b′ (solid curves) in Fig. 6 are identical w.r.t. the same
proprioceptive features. Note that the initial orientation of the
frame b′ can be randomly selected but should be consistent
across different toss actions and tossed objects w.r.t. the robot
gripper. Here for simplicity, we set the initial orientation to be
identical to that of the robot gripper, i.e., Rg

b′ = I, where I is the
identity matrix. Then, the object pose or

t (more specifically, the
relative displacement of the object orientation) can be defined as
the rotational displacement of the frame b′ w.r.t. the robot frame
r. In particular, we parameterizeor

t in the form of angle-axis, i.e.,
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Fig. 9. Model architecture. We employ an encoder-decoder architecture to learn (1) and (2) jointly. Encoder processes the temporal sequence of robot proprioceptive
observations X to obtain an embedding of toss dynamics e, from which the decoder generates a prediction of the object trajectory Y . We use a fully connected
layer (referred to as the multimodal fusion) to fuse multiple single-modal toss features {ex,eẋ,ef ,ec}. We also employ a separate correlated encoder with a
fusion layer (referred to as the cascaded fusion) to process synchronized multimodal proprioceptive observations at each timestep.

or
t ∈ R

3 to eliminate the value dependency in parameterization.
Note if there exists a prescribed body frame b, the object pose
parameterized w.r.t. b can be easily transformed by multiplying
the rotation matrix Rb′

b .
In this context, we discretize and parameterize the object

trajectory as Y = {(pr
t,o

r
t)}nj=1 and t = jT, where n denotes

the number of the trajectory waypoints and T denotes the
temporal interval between every two neighboring waypoints.
nT denotes the trajectory duration. Different from visual pre-
diction or other physics-based methods, our method leverages
no explicit observation or modeling of the object dynamics.
Rather, it decodes the entire object trajectory from the previously
learned toss dynamics. This is beneficial: Our method eliminates
the prediction dependency on the prior (visual) observations of
object motions; it accurately predicts the flying trajectories of
robot-tossed objects in real-time; and more importantly, it does
not rely on the physical model of the tossed objects, but only
the aforementioned proprioceptive perceptions of robot tossing,
making the prediction more simple but effective. We present
experimental analysis to evaluate the performance of our method
on various seen and unseen objects in Section IV.

C. Model Architecture

We use an encoder-decoder architecture (see Fig. 9) to learn
the functions defined by (1) and (2) jointly. The encoder pro-
cesses the temporal sequence of robot proprioceptive observa-
tions X to obtain an embedding of the toss dynamics e, from
which the decoder yields a prediction of object flying trajectory
Y .

We propose two model architectures for the encoder to
accommodate the synchronization scenarios that can happen
during real tossing-centric robot applications. In most cases,
since different sensory modalities can hardly be sampled syn-
chronously due to the varied sampling frequency and transmit
latency, the temporal perceptions of different modalities cannot
be synchronized or aligned. In these cases, the encoder processes
each sensory modality separately to extract their corresponding

single-modal toss features {ex, eẋ, ef}, respectively, and then
fuses them together to obtain the toss embeddinge. In some other
cases, the temporal observations of different sensory modali-
ties can be obtained synchronously. As aforementioned, these
observations of different modalities can be correlated in both
temporal and spatial domains. For example, during robot tossing,
the robot motion and F/T observations are correlated at each
waypoint. Such correlations can contain additional features or
clues that facilitate the learning of toss dynamics. In this regard,
the encoder also fuses directly the synchronized observations
of different sensory modalities at each waypoint to extract their
correlation feature ec with a separate module. The correlation
featureec is then added and fused together with the single-modal
features {ex, eẋ, ef , ec} to obtain the toss dynamics e. We
present experimental results to evaluate the effectiveness of each
sensory modality and their correlations in modeling the toss
dynamics in Section IV-C.

As depicted in Fig. 9, according to the sequential nature of
the input proprioceptive perceptions and the output discretized
object trajectory, we apply LSTM module [29], [30], [31], a
class of recurrent neural networks for sequence processing,
to construct both encoder and decoder. Each LSTM module
consists of multiple layers of connected LSTM cells. As shown
in Fig. 10, the compact forms of the equations for the forward
pass of an LSTM cell are as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ut = σ(Wf [ht−1,at] + bf )

it = σ(Wi[ht−1,at] + bi)

gt = tanh(Wc[ht−1,at] + bc)

ct = ut � ct−1 + it � gt

yt = σ(Wo[ht−1,at] + bo)

ht = yt � tanh(ct)

(3)

where Wf , Wi, Wc, and Wo are the coefficient matrices, and
bf , bi, bc, and bo are the bias vectors. These parameters are
learned during training. at, ht, and ct denote, respectively, the
input state, hidden state, and cell state at time t. ut, it, gt, and
yt denote the input gate, forget gate, cell gate, and output gate at
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Fig. 10. Structure of an LSTM cell. Sigmoid and Tanh denote the sigmoid and
hyperbolic tangent activation functions, respectively. [ , ] denotes the concate-
nation operation.

time t, respectively.σ(·)denotes the sigmoid activation function,
and � denotes the Hadamard product.

The encoder contains four LSTM modules to process three
temporal sequences of single-modal observations and one se-
quence of synchronized multimodal observations, respectively.
We apply a simple cascaded layer (referred to as the cascaded
fusion) to concatenate the synchronized observations of differ-
ent modalities, and a fully connected layer (referred to as the
multimodal fusion) to fuse multiple single- and cross-modal
toss features. The decoder contains one single LSTM module
to decode the sequence of object trajectory in an autoregressive
manner. We name our model for the asynchronous toss scenarios
as TossNet, and the model for the synchronous scenarios as
syn-TossNet. We compare the proposed methods with several
other state-of-the-art methods in Section IV-B.

D. Training and Implementation

1) Loss Function: The network is trained with a L2 loss
function between the ground truth and the predicted object
trajectories, which is written as follows:

L = wp

⎛
⎝ n∑

j=0

||pj − p̂j ||2
⎞
⎠ /n+ wo

⎛
⎝ n∑

j=0

||oj − ôj ||2
⎞
⎠ /n

(4)
where pj and p̂j denote the ground truth and predicted object
position at jth waypoint, respectively. oj and ôj denote the
ground truth and predicted object orientation at jth waypoint,
respectively. wp and wo are tunable weights for the position loss
and orientation loss, respectively.

2) Data Collection: To efficiently collect diverse data to
train our models, we build a dual-robot system for autonomous
data collection that can reset itself with self-supervision (see
Fig. 11). The data collection process is recorded and provided
in the Supplementary Material. During each collection cycle, a
recycling robot (left) first passes an object to the toss robot (right)
with a broad shallow box. The toss robot picks up the object with
a random firm grasp and moves to an initial toss pose. Then, it
selects and executes a random toss action. In the meanwhile, the
recycling robot returns to catch the object and then shakes the
box gently so that the object can be relocated to the box center
to facilitate the next collection cycle. The robot’s proprioceptive
perceptions from the initial toss point to the gripper release

Fig. 11. Autonomous data collection for training. We build a dual-robot system
for data collection that can reset itself with self-supervision. The recycling robot
(left) collects and provides the object with a shallow box, and the toss robot
picks the object and tosses it out with random toss actions. The robot motion
and F/T values at the tossing stage are recorded with onboard sensors (ATI F/T
mini45) as the input features, whereas the object trajectories are recorded with
OptiTrack as the ground truth labels.

point are recorded with the onboard sensors (robot position and
velocity and ATI F/T mini45) as input features, and the object
flying trajectory from the gripper release point to the object
landing point is recorded with an optical motion capture system
(OptiTrack) as the ground truth. In addition, we also developed
a similar simulation environment with PyBullet [81], which acts
as a consistent, controlled, and easy-regulated environment for
fair and large-scale model evaluation. The autonomous data
collection process and simulation environment are demonstrated
in the video of the Supplementary Material.2

3) Implementation: During implementation, as shown in
Algorithm 1, the recurrent nature of LSTM modules enables our
proposed TossNet to model the toss dynamics in parallel with the
robot tossing process, by processing the updated sensory obser-
vations at runtime. This, in fact, eliminates the computational
time of task perception and modeling from the conventional
perception-model-prediction pipeline. Further, different from
the vision-based prediction, which has to observe the object
trajectory and predict its follow-ups recursively, once the robot
releases its gripper, our method can output the entire object
trajectory without the need to further observe the object. It, there-
fore, further reduces the prediction time from the pipeline. This
is particularly advantageous for time-critical toss applications,
e.g., robot juggling [4], [9]. We provide a detailed analysis of the
time complexity of our method in Section IV-C and a variety of
real-world robot applications using our method in Section IV-D.

IV. EXPERIMENTS

This section presents a series of experimental results in both
simulated and real settings. We aim to evaluate 1) the accuracy
and efficiency of our method (TossNet) to model the toss
dynamics from robot proprioceptive observations and predict
the object flying trajectories from the learned toss dynamics (see
Section IV-B), 2) the effectiveness of each sensory modality
and their correlations in modeling the toss dynamics (see

2Video of the real robot experiments is available online at https://youtu.be/y
Bz9debQyg
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Fig. 12. Construction of datasets. We collect three datasets {Ms,Gs,Os} in the simulated environment to systematically evaluate if our method can capture
the variations of (a) robot motion, (b) grasp, and (c) physical proprieties of the tossed objects in modeling the toss dynamics. (d) We collect two real-world toss
datasets {Gr,Or} corresponding to the varied robot grasps and twenty different objects to train and evaluate our method. (e) We also include a dataset of real unseen
objects for the independent model evaluation. The real objects are varied in geometries such as cylinders, cubes, and polyhedrons, and materials including rubber,
aluminium, wood, and ABS resin.

Algorithm 1: TossNet and syn-TossNet.
Input: Sensory observation x, ẋ, f
Output: The predicted object trajectory Y
1: while robot tossing (t ≤ 0) do
2: if xt/ẋt/f t updated then
3: ex/ẋ/f ← LSTMx/ẋ/f (xt/ẋt/f t)

4: if synchronous then
5: ec ← LSTMc(xt, ẋt,f t)
6: if synchronous then
7: e← Fuse(ex, eẋ, ef , ec)
8: else
9: e← Fuse(ex, eẋ, ef )

10: Y ← LSTMdecoder(e)
11: return Y

Section IV-C), and 3) the deployment performance of our
method on different real robot systems and its potential usage
on various tossing-centric robot applications (see Section IV-D).
To this end, we build a variety of robot tossing datasets on both
seen and unseen objects. We compare our method with several
state-of-the-art baseline methods by evaluating their prediction
accuracy of object trajectories on various tossing scenarios.
We apply our method to challenging real-world tossing-centric
robot applications such as blind juggling and precise pitching.

A. Experimental Settings and Datasets

We collect a range of tossing datasets in both simulated and
real robot settings to train and evaluate our methods on both
seen and unseen objects. The data collection process has been
detailed in Section III-D.

Simulated Toss Datasets: We collect three simulated datasets
{Ms,Gs,Os} [see Fig. 12(a)–(c)] for a systematic and large-
scale model evaluation.

1) The motion datasetMs contains 10 K robot toss actions.
In each trial, the robot tosses one single cuboid block with
a same grasp but releases the block at different positions
and velocities [see Fig. 12(a)]. This dataset is primarily
used to evaluate the capability of our method to capture
robot motions in modeling the toss dynamics.

2) The grasp dataset Gs contains 20 K toss actions where the
robot tosses one single cuboid block with both randomized
release positions, velocities, and robot grasps on the block
[see Fig. 12(b)]. This is to further evaluate the model’s
capability to capture robot grasps (in addition to robot
motions) in modeling the robot toss dynamics.

3) The object dataset Os contains 20 K toss actions where
the robot tosses twenty different objects [see Fig. 12(c)],
with randomized release positions, velocities, and robot
grasps. This is to further evaluate the method’s capability
to capture object properties in modeling the toss dynamics.

Real-World Toss Datasets: Similarly, we collect two real-
world datasets, Gr and Or, corresponding to toss actions char-
acterized with randomized robot grasps and further different
objects (in addition to random robot motions). Gr contains 1 K
robot toss actions of an aluminum cuboid and Or contains 2 K
toss actions of twenty different objects [see Fig. 12(d)].

Unseen Objects: We also include a dataset of unseen objects
[see Fig. 12(e)], where each object does not appear in the above
training datasets. We collect 400 random toss actions on 11 real
objects. Each toss action is generated with randomized release
position, velocity, and robot grasp. This dataset is built only for
the independent model evaluation and never joins the training
pipeline.

For each involved object, its physical properties of importance
are calculated automatically with SolidWorks and its corre-
sponding robot grasps are sampled randomly from an offline
grasp dataset generated with GraspIt [82]. Note these object in-
formation is just for data generation but agnostic to our method.
We particularly include a set of nonhomogeneous objects in the
simulation datasets for an unbiased evaluation. Most real objects
are characterized by symmetrical geometries, such as cylinders,
cubes, and polyhedrons, and are made of uniform materials
including rubber, aluminium, wood, and ABS resin. Note this
is only for the simplicity of data generation, e.g., obtaining the
ground truth of object physical properties and achieving stable
robot grasps on these objects, while our method is in fact general
for all kinds of rigid objects.

For both simulated and real-world scenarios, we use a UR5
arm mounted with a Robotiq 2F-85 gripper. To reduce the side
effects of motion noises, in the real-world scenario, we set the
robot control mode to be velocity control, so the robot motion
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can be smoother at both position and velocity levels. We use the
ATI F/T mini45 sensor to collect the F/T variations during robot
tossing.

Training and Metrics: Each dataset is split into 70% for
training, 20% for validation, and 10% for testing. Furthermore,
to make full use of the datasets and for the unbiased model
evaluation, k-folder (k = 5) cross-validation is applied to train-
ing. The training and testing procedure is applied to all baseline
methods for a fair comparison.

We evaluate the trajectory prediction accuracy on the object
position and orientation separately with two different metrics as
follows:

1) Average displacement error (ADE) [83]: ADE refers to the
mean square error between all waypoints on the predicted
trajectories and their corresponding ground truth values. It
evaluates the overall prediction accuracy with the average
error distribution along the predicted trajectories. Note
that here, we report the rooted mean square error as ADE
for easier understanding.

2) Final displacement error (FDE) [31]: FDE refers to the
mean of absolute displacements between the predicted fi-
nal waypoints and their corresponding ground truth values.
Compared to ADE, it further illustrates how the predic-
tion error evolves along the predicted trajectories, and is
typically larger than ADE. Indeed, minimizing FDE is as
important as minimizing ADE in trajectory prediction, as
most methods can suffer from error propagation. From a
practical perspective, minimizing FDE in trajectory pre-
diction is even more crucial, as it is often followed by a
catch action (e.g., robot juggling) at a waypoint on the
latter trajectory segment.

B. Baseline Studies

We first compare our method against several baseline meth-
ods in modeling the robot toss dynamics, by evaluating their
performance of trajectory prediction on the above toss datasets.

1) Analytical: It computes the object flying trajectory autore-
gressively based on the equations of rigid body dynamics,
i.e., the Newton–Euler equations as follows:

{
F = M v̇

τ = Iω̇ + ω × Iω (5)

where F , τ denote the total force and torque acting on the
object’s CoM, respectively. M and I denote the object’s
mass and the moment of inertia, respectively, about the ob-
ject’s CoM. v and ω denote the object’s translational and
angular velocities, respectively. Specifically, the ground
truth values of the object’s physical properties, including
its mass, CoM, and moment of inertia are measured and
used in the evaluation, which, however, are agnostic to
other baselines and our method. In addition, the initial
motion state of the tossed object, i.e., the object position
and velocity at the robot release point, is also required
and approximated using the transformed object pose w.r.t.
that of the robot end-effector, assuming the robot grasp on
the object remains fixed during tossing. Note one may

argue that it is unfair for the analytical method to use
the approximated initial object state rather than its true
value. As claimed in previous sections, the object state
in highly dynamic robot manipulations can hardly be
captured due to the complex interactions (e.g., grasp slip)
and sensor limitations. In contrast, the robot state can be
easily obtained with the onboard proprioceptive encoders.
In fact, it is indeed unfair for other baseline methods, since
they can leverage no prior knowledge of the object but only
the proprioceptive observations of robot tossing.

2) MLP: It regresses the object trajectory directly from the
approximated initial motion state of the tossed object at
release with a multilayer perceptron (MLP). We use a four-
layered MLP and each hidden layer contains 128 hidden
neurons.

3) e-MLP: It decodes the object trajectory with a similar
MLP as above but from a vector of task embedding e [de-
fined by (1)] learned by our method (TossNet), rather than
from the initial motion state of the tossed object. This is to
evaluate the capability of our method to accurately model
the robot toss dynamics from proprioceptive observations,
and the effects of learned toss dynamics on improving the
prediction accuracy of object trajectories.

4) e-GPR: It also takes advantage of the task embedding e
learned by our method (TossNet), but based on Gaussian
processes (GP) [71], [84], [85] to regress the object tra-
jectory. We build a separate GP for each dimension of
the object trajectory, assuming that their values change
independently [71].

5) AttenS2S: It represents the pipeline of attention-based
DNN methods, e.g., Transformer [86], for S2S processing.
Briefly, similar to our method, it encodes the toss dynamics
from proprioceptive observations with a set of attention
modules, and then decodes the object trajectory from the
learned embeddings with another set of attention modules.

6) ConvS2S: It represents another pipeline of deep learning
methods using temporal convolutional operations for S2S
processing [87].

7) TossNet (ours): It represents our method to jointly
model robot toss dynamics and predict the object tra-
jectories. Compared with AttenS2S and ConvS2S, our
method is built with LSTM modules as detailed in
Section III.

8) Analy-TossNet: It combines the pure data-driven TossNet
with analytical physics. It differs from TossNet by pre-
dicting the object trajectory as residuals from an initial
approximation of the object trajectory based on physics,
as detailed in the analytical method (Analytical).

The ADE and FDE results are summarized in Tables I and II
and Tables III and IV, respectively, where position errors are in
meters, orientation errors are in radians, and standard deviations
are in parentheses. Overall, the four DNN-based methods (last
four rows) achieve higher prediction accuracy than other lines
of methods, by at least one order of magnitude in most cases.
Further, our proposed method (TossNet) excels among the four
deep learning methods for both seen and unseen objects in
predicting both object position and orientation.
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TABLE I
BASELINE RESULTS IN SIMULATION

TABLE II
BASELINE RESULTS IN REAL WORLD

TABLE III
BASELINE RESULTS IN SIMULATION

TABLE IV
BASELINE RESULTS IN REAL-WORLD
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Fig. 13. Predicted flying trajectories of a robot tossed banana by five baseline methods in (a) Simulation. (b) Real World. Each trajectory starts from the robot
release point (t = 0) and lasts for 0.6 s (t = 0.6). In both cases, the trajectory predicted by our method (the green line) aligns best with the ground truth (the blue
line) trajectory. In addition, the prediction errors by our method accumulate at a very slow rate and remain in a small range. (a) Ground truth and four predicted
trajectories for a simulated banana. (b) Ground truth and four predicted trajectories for a real 3-D-printed banana.

Specifically, taking solely the approximated initial motion
state of the tossed object, MLP fails to model the toss dy-
namics. It thus performs the worst among all baseline meth-
ods in trajectory prediction. The analytical method performs
slightly better than MLP, since it is built on a ground rule
of physics and exposed to more inputs, i.e., the ground truth
physical properties of the tossed objects. However, the analytical
method assumes a deterministic system, which is rarely the
case in dynamic manipulation (this will be further discussed
later with Fig. 13), and, therefore, also shows limited prediction
accuracy. By absorbing a task feature vector e produced by our
method (TossNet), e-MLP achieves a much higher prediction
accuracy of the object trajectories than pure MLP. It proves
that our method can obtain an accurate estimation of the robot
toss dynamics from proprioceptive observations. While with
the same task embedding e, e-GPR outperforms e-MLP in
both simulation and real scenarios, indicating that GPR is more
expressive than MLP in decoding object trajectories from the
learned toss dynamics. However, it still falls short compared to
DNN-based methods, particularly in terms of error deviation.

Among the four DNN-based methods, AttenS2S achieves
a comparable prediction accuracy to our method. However,
compared with TossNet, AttenS2S (attention-based) has a higher
model complexity, which has been proved to easily lead to
model overfitting especially while being trained using limited
data [88]. On the other hand, attention-based methods (e.g.,
Transformer [86]) by principle require obtaining the entire input
sequence in one shot for task modeling (i.e., to compute the
so-called attention scores), which may pose further computa-
tional delay in real-world toss-centric applications, particularly
when the input sequence is long and multimodal. In contrast, as
previously mentioned in Section III, our method consumes the
input sequence recurrently and, therefore, can be parallelized

with robot tossing, i.e., it can perceive and model the robot toss
action at runtime, which is advantageous for time-critical tossing
applications.

When it comes to physics-based methods, it is widely proven
that leveraging physics can potentially improve the performance
of data-driven prediction methods, as the optimization can be
possibly steered from an initial physics-based solution of already
high quality. However, as the analytical method (first row in
Tables I–IV) fails to provide a reasonably accurate approxi-
mation of the object trajectory (especially in orientation), the
prediction accuracy of the physics-augmented TossNet (Analy-
TossNet, last row in Tables I–IV) does not show apparent im-
provements compared with pure TossNet.

Fig. 13 plots the predicted flying trajectories for a simulated
and a real 3-D-printed robot-tossed banana respectively, pro-
duced by our and four selected baseline methods. Each trajectory
starts from the robot release point (t=0) and lasts for 0.6 s
(t=0.6). Overall, for both objects, the trajectories predicted by
our method (the green lines) align best with their ground truth
trajectories (the blue lines and obtained with OptiTrack). In
addition, it can be observed the prediction errors of all methods
grow larger along the trajectories, mainly due to the issue of error
propagation. However, the error by our method accumulates at
a very slow rate and remains in a small range, which can also
be observed by comparing ADE and FDE in Tables I (respec-
tively II) and III (respectively IV). On the one hand, there are two
major reasons accounting for this phenomenon. First, the object
trajectory typically deviates more dramatically as the object flies,
and therefore gets more difficult to fit. Meanwhile, the prediction
error can propagate forward and accumulate along the predicted
trajectory, which is the major drawback of autoregressive decod-
ing. On the other hand, as also shown in Tables III and IV, our
method still outperforms in minimizing the final perdition errors.
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TABLE V
ABLATION RESULTS IN SIMULATION

TABLE VI
ABLATION RESULTS IN REAL-WORLD

In other words, in addition to the high-prediction accuracy, our
method achieves a slower rate of error propagation, which is
critical for long-horizon iterative trajectory prediction.

It also shows in Fig. 13 that the actual initial motion state of
the tossed object (i.e., the starting point at the ground truth object
trajectory) can differ from the approximated one predicted by
the analytical method (i.e., the starting point at the trajectory
predicted by the analytical method). It demonstrates that due
to highly complex interaction dynamics, the relative transfor-
mation between the robot gripper and the tossed object can
indeed change during tossing, leading to an indeterminate offset
between the approximated initial object state and its true value.
In fact, in addition to dynamic grasp displacements, there exist
more dynamic uncertainties that are supposed to be considered
(but can be hardly captured with extrinsic sensors as discussed
before) to accurately model the toss dynamics.

C. Ablation Studies

We also conduct a series of ablation studies to evaluate the
effectiveness of each sensory modality in modeling the toss
dynamics and predicting the resulting object trajectory. Briefly,
we compare four model variants as follows.

1) r -TossNet: It leverages only the robot motion sequence at
the robot tossing stage to encode the robot toss dynamics
and decode the resulting object trajectory.

2) ft-TossNet: It leverages only the F/T reading sequence to
encode the toss dynamics.

3) TossNet (ours): Both robot motion and F/T sequences
are employed but processed separately to encode the toss
dynamics. This applies to the scenarios where the robot
motion and F/T perceptions during robot tossing can only
be sampled asynchronously.

4) syn-TossNet (ours): In addition to separate processing,
the method also fuses and processes robot motion and
F/T perceptions together to model the toss dynamics.
This applies to the scenarios where the robot motion and
F/T perceptions can be sampled synchronously. It also

Fig. 14. Learning curves of four model variants along the learning epochs.
Briefly, TossNet (pink) and syn-TossNet (green), which absorb the historical
observations of both sensory modalities outperform r -TossNet (blue) and ft-
TossNet (orange), which absorb only one single modality. syn-TossNet achieves
a higher prediction accuracy than TossNet by absorbing additional multimodal
correlated features. The solid line represents the mean error of fivefold runs, and
the shaded region represents the standard deviation of the training runs at each
epoch.

acts as a baseline to study the spatio-temporal correla-
tions of different sensory modalities, and their effects
on learning the tossing dynamics, as discussed before in
Section III-C.

The ADE and FDE results of the above models are summa-
rized in Tables V–VIII. Position errors are presented in units of
meters, and orientation errors are in radians. Standard deviations
are in parentheses. Fig. 14 also shows their learning curves
on the dataset Os and Or, respectively. Overall, TossNet and
syn-TossNet which absorb the historical observations of both
sensory modalities outperform r -TossNet and ft-TossNet which
absorb only one single modality, i.e., the robot motion and F/T
variations, respectively. Comparing r -TossNet and ft-TossNet
(rows 1 and 2 in Tables V–VIII), we see that while ft-TossNet
achieves higher prediction accuracy, r -TossNet converges faster
than ft-TossNet as shown by their learning curves in Fig. 14.
TossNet shows both advantages of fast convergence and high-
prediction accuracy.

The results demonstrate that the robot motions reflect more
explicitly the motion characteristics of a robot toss action, and
thus can more directly relate the robot toss dynamics and the
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TABLE VII
ABLATION RESULTS IN SIMULATION

TABLE VIII
ABLATION RESULTS IN REAL WORLD

TABLE IX
PREDICTION ERROR (ADE) OF TOSSNET ON THE DATASETS OS, OR AND UNSEEN OBJECTS WITH INPUT SEQUENCES OF VARIED LENGTH {0.1 S, 0.5 S, 1.0S}

object flying dynamics, speeding up the learning process. On
the other hand, the robot motion modality contains no clues
on the robot–object interactions (e.g., robot grasp) and the
physical properties of the tossed object. Therefore, r -TossNet
cannot model the toss dynamics accurately, leading to limited
prediction accuracy of the resulted object trajectory. The F/T
values, particularly its spatio-temporal variations, in contrast,
can reflect implicitly not only the motion characteristics of
a robot toss action, but also contain rich information on the
robot grasp and physical properties of the object. Therefore,
ft-TossNet improves the modeling accuracy of robot toss dy-
namics and, in turn, enhances the prediction accuracy of object
trajectories.

In addition, it can be observed in both Tables V–VIII and
Fig. 14, syn-TossNet (last row in Tables V–VIII) achieves a
higher prediction accuracy than TossNet. syn-TossNet differs
from TossNet only by extracting and fusing additional mul-
timodal correlated features in modeling the toss dynamics. It
indicates that: 1) Our method can effectively extract the spatio-
temporal correlations among synchronous F/T and motion ob-
servations in robot tossing, and 2) with the correlated multimodal
features, our method can obtain a more accurate estimation of
the robot toss dynamics.

Input Sequence Length: To further evaluate the effects of input
sequence on modeling the robot toss dynamics and predicting
the resulting object trajectories, we also experiment by providing
the model (TossNet) with the input sequences of varied horizon
length, i.e., {0.1, 0.5, 1.0} s. The results of prediction error

(ADE) on the datasetsOs,Or and unseen objects are summarized
in Table IX. Overall, the prediction accuracy deteriorates quickly
as the input sequence gets short, especially in object orientation.
This is mainly because the shorter the input sequence, the
less information the sequence contains to characterize the toss
dynamics. For other experiments in this section, we set the length
of the input sequence to be 1.0 s.

Model Inference Time: We also evaluate the model infer-
ence time, i.e., the time for the model to predict the object
trajectory of a certain duration, which is critical for trajectory
prediction in real tossing-centric applications. For example,
in robot juggling, if it takes too much time for the model to
output the predictions of object trajectories, there can be no
enough reaction time for the robot to move and catch the tossed
object.

We evaluate the model to predict the object trajectory of
varied durations. The model inference time for the object trajec-
tory of {0.1, 0.2, 0.5} s are {12.2(0.1), 14.5(0.1), 20.1(0.3)}
ms, respectively, (standard deviations are in parentheses). In
other words, the model inference time increases linearly with
trajectory duration. In addition, compared with vision-based or
other trajectory prediction methods which rely on the online
observations of the objects to predict their follow-up trajectories
autoregressively, our method uses only proprioceptive obser-
vations of robot tossing and predicts the object trajectory in
one shot. Therefore, our model is much more computationally
efficient in trajectory prediction and flexible for tossing-centric
applications.
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Fig. 15. Blind juggling robot system. With TossNet, a dual-arm IRB-1100 robot with multifingered hands can easily play blind juggling by tossing and catching
a plastic bottle. As TossNet can predict the entire object trajectory accurately in real-time, the robot achieves a success rate of 100% in 20 juggling experiments.
(a)–(d) Right arm tosses a bottle out. (e) Right arm releases the bottle and TossNet predicts the whole flying of the bottle in one shot. (e)–(l) Left arm moves to the
intercept point (t = 0.5 s) on the predicted trajectory and catches the bottle stably.

D. Real Robot Applications

We apply our method to a variety of scenarios to further eval-
uate its deployment performance on real robots and demonstrate
its potential usage in tossing-centric applications. All real robot
experiments are recorded and can be found in the video of the
Supplementary Material.

Different Robot Deployment: In addition to UR5 with which
we discuss and demonstrate our method mostly, we also ex-
periment with IRB-1100 from ABB, a higher performance
industrial robot, to evaluate the deployment performance of
our method on different robot systems. Before deployment,
TossNet is re-trained with data collected from an IRB robot
tossing an empty plastic bottle (see Fig. 15). Quantitatively,
the position/orientation ADE and FDE results of the prediction
trajectories on the IRB robot are 1.0e-3(1.51e-4)/2.0e-3(1.1e-3),
and 1.5e-3(1.4e-4)/4.5e-3(2.7e-3), respectively. It demonstrates
that, in addition to the UR5 robot, TossNet works well on the
real IRB robot and further reduces the prediction errors to the
millimeter/degree scale.

Blind Juggling Robot System: In this scenario, a dual-arm
IRB-1100 robot with multifingered hands is programmed to
play blind juggling by tossing and catching a plastic bottle
(see Fig. 15). Blind juggling is challenging, particularly in
nonvisual and short-distanced scenarios. It requires the robot to
accurately and efficiently predict/track the object’s motion and
move swiftly to the intercept point to catch the flying object.

Specifically, after the right arm (for picking) picks and tosses
out the bottle, i.e., after collecting all proprioceptive obser-
vations, TossNet predicts and outputs the flying trajectory of
the bottle immediately to the robot controller. The controller
then applies a direct catching strategy where the left arm (for
catching) moves to the intercept point (the predicted object
location at 0.5 s) directly on the predicted trajectory and closes
its fingers according to the predicted timing.

We perform the juggling experiments 20 times and observe
a success rate of 100%. It mainly benefits from two factors: 1)
Our method guarantees high-prediction accuracy of the object
trajectories such that the robot can follow and catch the object
at the right intercept locations; and 2) Different from methods
relying on the online observations of the object trajectory, our
method predicts the entire trajectory in real-time and in one shot
before the object flies out, which leaves sufficient time for the
robot to move to intercept and catch the object in time.

Precise Pitching to Target: Beyond the object trajectory pre-
diction, in this scenario, the UR5 robot is set to project a set of un-
seen objects into a moving small container (see Fig. 16). The con-
tainer poses are randomly generated in the toss-reachable space
and provided to TossNet before each experiment. Compared
to target-throwing tasks showcased in previous literature [11],
[51], precise-pitching exhibits a much narrower error tolerance.
It requires the object’s trajectory to precisely accommodate both
the position and orientation of the target container.
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Fig. 16. Precise pitching-to-target. Robot pitches a set of unseen objects precisely into a small container with random target poses. Success rates for the above
object in 20 experiments are (a) 60%, (b) 80%, (c) 90%, (d) 75%, and (e) 80%, respectively. The diameter of the target container is only 7.0 cm and the size of
the axis-aligned bounding box for each tossed object is in parentheses. The pitching tasks here are particularly challenging, since the size of the container is very
small compared with those of the tossed objects. (a) Mechanical assembly (5:5 × 5:5 × 6:5cm3), (b) Plastic bottle (5:7 × 5:7 × 22:0cm3), (c) Spray bottle (4:0 ×
4:0 × 13:5cm3), (d) Ball with different pitching target poses (7:0 × 7:0 × 7:0cm3), (e) Toy brick (4:2 × 3:0 × 8:4cm3).

Since TossNet is a forward model, we use it as a trajectory
predictor to search for approximate toss actions using bisection
searching. Specifically, given an unseen object and a reachable
pose of the static cup, we first select a random stable grasp on the
object and sample a release position and velocity for the robot
end-effector. Subsequently, we apply the cubic spline [89] and
slerp [90] methods for translational and rotational interpolations,
respectively. This yields a highly smooth trajectory for robot
throwing. By performing the mocked throwing trajectory (i.e.,
the robot does not actually release the object), we obtain the
corresponding F/T observations, which contain rich information
on the tossing dynamics, such as the object properties and robot
grasps. We then employ our method to predict the resulting
object’s flying trajectory, which determines if the object can fit
into the target cup. This process is repeated and accelerated using
bisection searching until a robot action that can successfully toss
the object into the target cup is found.

We leverage the model trained with datasetOs [see Fig. 12(d)]
to make predictions, while the pitched objects are all unseen
[see Fig. 12(e)] to TossNet, i.e., they are not included in training
the model. We run 20 experiments with random target pitching
poses for each object and observe an average success rate of
77.0%. On the one hand, the primary reason for failure stems
from prediction errors, particularly in object orientation. On the
other hand, the pitching tasks here are particularly challenging,
given the close resemblance in size between the container and
the tossed objects. For example, the diameter of the ball [see
Fig. 16(d)] is 7.0 cm, which is the same as the container, leaving
almost no error tolerance for pitching.

In addition, although our method can accurately measure and
model the toss dynamics from robot proprioceptive observa-
tions, contributing to the high prediction accuracy of object
motions and success rates of precise robot pitching, executing a

sampled robot toss action, however, can be easily disturbed and
diverged with noise. In this regard, rather than searching and
executing in an open manner, we aim to include our method in a
closed loop to achieve more precise, adaptive, and controllable
robot tossing in the future. To this end, a controller can be
built on top of the proposed TossNet, to reactively adjust and
control the toss actions based on real-time predictions of TossNet
using proprioceptive observations, and to toss random objects
into dynamically moving containers. More advanced searching
strategies, such as golden section searching and optimization-
based searching [52], [91], can also be incorporated to accelerate
the searching process.

V. CONCLUSION

We have presented TossNet, an LSTM-based method that can
jointly model the robot toss dynamics and predict the flying
trajectories of arbitrary robot-tossed rigid objects. Contrary to
many previous studies, which rely on tailored and/or exterocep-
tive sensors, e.g., stereo cameras, our method leverages only the
onboard proprioceptive robot motion and F/T sensors. It makes
our method an effective, lightweight, and reproducible strategy,
particularly for dynamic manipulation. We qualitatively show
that our proposed method outperforms state-of-the-art methods
in modeling the toss dynamics with proprioceptive perceptions.
In addition, our method can accurately predict the entire object
trajectories without online observations in one shot and in nearly
real-time. These combined strengths contribute to high success
rates when applying our proposed method to a variety of chal-
lenging toss-centric applications, such as blind robot juggling
and precise pitching. Our proposed work is expected to have a
long-term impact in areas such as dynamic and nonprehensile
manipulation [1], [2], [3]. By pushing the boundaries of what
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is achievable with proprioceptive feedback and sensor fusion,
our work paves a new way for handling complex real-world
manipulation tasks.

Future work will include extending our method to model the
robot tossing of unknown objects with more complex physical
properties, e.g., deformable and fluid objects, and other instances
of dynamic manipulation such as pushing and swinging. In
addition, although our method exhibits remarkable generaliza-
tion due to the proprioceptive perception strategy and consis-
tent trajectory parameterization in proprioceptive robot tossing,
some robot-specific factors, such as the gripper dynamics, highly
depend on the hardware and may not generalize well across
different robot platforms. In this regard, in addition to gathering a
larger amount of in-distribution data from a diverse array of robot
platforms, strategies on domain generalization and shift [92],
[93] will also be investigated to improve the model’s gener-
alization across different hardwares. We also seek to explore
robot tossing in the context of human–robot interaction [9],
[25], [27], [94]. In these settings, human-oriented factors such
as human motions, safety, and comfort, are to be systematically
formulated and addressed to facilitate the development of more
dynamically capable and collaborative robot assistants. To this
end, imitation-based learning methods to retarget, learn, and
reproduce human–human throw and catch skills to robots will
also be investigated.

REFERENCES

[1] M. T. Mason and K. M. Lynch, “Dynamic manipulation,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 1993, pp. 152–159.

[2] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation:
Controllability, planning, and experiments,” Int. J. Robot. Res., vol. 18,
pp. 64–92, 1999.

[3] F. Ruggiero, V. Lippiello, and B. Siciliano, “Nonprehensile dynamic
manipulation: A survey,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 1711–1718, Jul. 2018.

[4] M. M. Schill and M. Buss, “Robust ballistic catching: A hybrid system
stabilization problem,” IEEE Trans. Robot., vol. 34, no. 6, pp. 1502–1517,
Dec. 2018.

[5] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,”
Science, vol. 364, no. 6446, 2019, Art. no. eaat8414.

[6] N. Furukawa, A. Namiki, S. Taku, and M. Ishikawa, “Dynamic regrasping
using a high-speed multifingered hand and a high-speed vision system,”
in Proc. IEEE Int. Conf. Robot. Automat., 2006, pp. 181–187.

[7] N. C. Dafle et al., “Extrinsic dexterity: In-hand manipulation with external
forces,” in Proc. IEEE Int. Conf. Robot. Automat., 2014, pp. 1578–1585.

[8] C. Wang, S. Wang, B. Romero, F. Veiga, and E. Adelson, “SwingBot:
Learning physical features from in-hand tactile exploration for dynamic
swing-up manipulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.,
2020, pp. 5633–5640.

[9] J. Kober, M. Glisson, and M. Mistry, “Playing catch and juggling with a
humanoid robot,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots, 2012,
pp. 875–881.

[10] H. Frank, N. W.-Wojtasik, B. Hagebeuker, G. Novak, and S. Mahlknecht,
“Throwing objects–A bio-inspired approach for the transportation of
parts,” in Proc. IEEE Int. Conf. Robot. Biomimetics, 2006, pp. 91–96.

[11] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot:
Learning to throw arbitrary objects with residual physics,” IEEE Trans.
Robot., vol. 36, no. 4, pp. 1307–1319, Aug. 2020.

[12] H. I. Christensen and G. D. Hager, “Sensing and estimation,” in Springer
Handbook of Robotics. Berlin, Germany: Springer, 2016, pp. 91–112.

[13] Y. Shirai and H. Inoue, “Guiding a robot by visual feedback in assembling
tasks,” Pattern Recognit., vol. 5, no. 2, pp. 99–108, 1973.

[14] R. Sharma, J.-Y. Herve, and P. Cucka, “Dynamic robot manipulation
using visual tracking,” in Proc. IEEE Int. Conf. Robot. Automat., 1992,
pp. 1844–1845.

[15] F. Aghili, “A prediction and motion-planning scheme for visually guided
robotic capturing of free-floating tumbling objects with uncertain dynam-
ics,” IEEE Trans. Robot., vol. 28, no. 3, pp. 634–649, Jun. 2012.

[16] M. Costanzo, “Control of robotic object pivoting based on tactile sensing,”
Mechatronics, vol. 76, 2021, Art. no. 102545.

[17] A. Grover, C. Grebe, P. Nadeau, and J. Kelly, “Under pressure: Learning
to detect slip with barometric tactile sensors,” 2021, arXiv:2103.13460.

[18] Z. Xu et al., “COCOI: Contact-aware online context inference for gener-
alizable non-planar pushing,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2020, pp. 176–182.

[19] S. Dong, W. Yuan, and E. H. Adelson, “Improved gelsight tactile sensor for
measuring geometry and slip,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2017, pp. 137–144.

[20] J. W. James and N. F. Lepora, “Slip detection for grasp stabilization with
a multifingered tactile robot hand,” IEEE Trans. Robot., vol. 37, no. 2,
pp. 506–519, Apr. 2021.

[21] P. Nadeau, M. Giamou, and J. Kelly, “Fast object inertial parameter
identification for collaborative robots,” in Proc. Int. Conf. Robot. Automat.,
2022, pp. 3560–3566.

[22] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer
of tactile control policies for aggressive swing-up manipulation,” IEEE
Robot. Autom. Lett., vol. 6, no. 3, pp. 5761–5768, Jul. 2021.

[23] W. Hong and J.-J. E. Slotine, “Experiments in hand-eye coordination using
active vision,” in Proc. Conf. Exp. Robot. IV, 1997, pp. 130–139.

[24] U. Frese et al., “Off-the-shelf vision for a robotic ball catcher,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2001, pp. 1623–1629.

[25] M. Riley and C. G. Atkeson, “Robot catching: Towards engaging human-
humanoid interaction,” Auton. Robots, vol. 12, no. 1, pp. 119–128,
2002.

[26] S. Kim and A. Billard, “Estimating the non-linear dynamics of free-flying
objects,” Robot. Auton. Syst., vol. 60, no. 9, pp. 1108–1122, 2012.

[27] D. Carneiro, F. Silva, and P. Georgieva, “Robot anticipation learning
system for ball catching,” Robotics, vol. 10, no. 4, 2021, Art. no. 113.

[28] A. Almazov, “Ball sense,” Accessed: Jun. 21, 2024. [Online]. Available:
https://alvin-almazov.com/tennis-eng/ball-sense/

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[30] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recurrent
neural network architectures for large scale acoustic modeling,” in Proc.
Conf. Int. Speech Commun. Association, Interspeech, 2014, pp. 338–342.

[31] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. F.-Fei, and S. Savarese,
“Social LSTM: Human trajectory prediction in crowded spaces,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 961–971.

[32] Y. Gai, Y. Kobayashi, Y. Hoshino, and T. Emaru, “Motion control of a
ball throwing robot with a flexible robotic arm,” Int. J. Comput. Inf. Eng.,
vol. 7, no. 7, pp. 937–945, 2013.

[33] W. Mori, J. Ueda, and T. Ogasawara, “A 1-DoF dynamic pitching robot
that independently controls velocity, angular velocity and direction of a
ball,” Adv. Robot., vol. 24, no. 5/6, pp. 921–942, 2010.

[34] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion
based on kinetic chain approach,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2008, pp. 3206–3211.

[35] D. M. Lofaro, R. Ellenberg, P. Oh, and J.-H. Oh, “Humanoid throwing:
Design of collision-free trajectories with sparse reachable maps,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst., 2012, pp. 1519–1524.

[36] D. E. Stewart, “Rigid-body dynamics with friction and impact,” SIAM Rev.,
vol. 42, no. 1, pp. 3–39, 2000.

[37] R. Ronsse, P. Lefèvre, and R. Sepulchre, “Sensorless stabilization of
bounce juggling,” IEEE Trans. Robot., vol. 22, no. 1, pp. 147–159,
Feb. 2006.

[38] R. Ronsse, P. Lefevre, and R. Sepulchre, “Rhythmic feedback control of
a blind planar juggler,” IEEE Trans. Robot., vol. 23, no. 4, pp. 790–802,
Aug. 2007.

[39] P. Reist and R. D’Andrea, “Design and analysis of a blind juggling robot,”
IEEE Trans. Robot., vol. 28, no. 6, pp. 1228–1243, Dec. 2012.

[40] K. Muelling, J. Kober, and J. Peters, “Learning table tennis with a mixture
of motor primitives,” in Proc. IEEE-RAS Int. Conf. Humanoid Robots,
2010, pp. 411–416.

[41] J. Wu, I. Yildirim, J. J. Lim, B. Freeman, and J. Tenenbaum, “Galileo:
Perceiving physical object properties by integrating a physics engine with
deep learning,” in Proc. Annu. Conf. Neural Inf. Process. Syst., 2015,
pp. 127–135.

[42] Z. Xu, J. Wu, A. Zeng, J. B. Tenenbaum, and S. Song, “DensePhysNet:
Learning dense physical object representations via multi-step dynamic
interactions,” Robot.: Sci. Syst., 2019.

Authorized licensed use limited to: Nvidia Corp. Downloaded on June 10,2025 at 07:58:47 UTC from IEEE Xplore.  Restrictions apply. 

https://alvin-almazov.com/tennis-eng/ball-sense/


3250 IEEE TRANSACTIONS ON ROBOTICS, VOL. 40, 2024

[43] N. Fazeli, S. Zapolsky, E. Drumwright, and A. Rodriguez, “Learning data-
efficient rigid-body contact models: Case study of planar impact,” in Proc.
Conf. Robot Learn., 2017, pp. 388–397.

[44] Y. Jiang, J. Sun, and C. K. Liu, “Data-augmented contact model for
rigid body simulation,” in Proc. Annu. Learn. Dyn. Control Conf., 2022,
pp. 378–390.

[45] S. Pfrommer, M. Halm, and M. Posa, “Contactnets: Learning discontin-
uous contact dynamics with smooth, implicit representations,” in Proc.
Conf. Robot Learn., 2021, pp. 2279–2291.

[46] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and
L. Yang, “Physics-informed machine learning,” Nature Rev. Phys., vol. 3,
no. 6, pp. 422–440, 2021.

[47] E. W. Aboaf, C. G. Atkeson, and D. J. Reinkensmeyer, “Task-level robot
learning,” in Proc. IEEE Int. Conf. Robot. Automat., 1988, pp. 1309–1310.

[48] E. W. Aboaf, S. M. Drucker, and C. G. Atkeson, “Task-level robot learning:
Juggling a tennis ball more accurately,” in Proc. IEEE Int. Conf. Robot.
Automat., 1989, pp. 1290–1295.

[49] A. Ghadirzadeh, A. Maki, D. Kragic, and M. Björkman, “Deep predictive
policy training using reinforcement learning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2017, pp. 2351–2358.

[50] A. Kloss, S. Schaal, and J. Bohg, “Combining learned and analytical
models for predicting action effects from sensory data,” Int. J. Robot.
Res., vol. 41, no. 8, pp. 778–797, 2022.

[51] D. Bianchi, M. G. Antonelli, C. Laschi, A. M. Sabatini, and E.
Falotico, “Softoss: Learning to throw objects with a soft robot,”
IEEE Robot. Autom. Mag., 2023, early access, Sep. 29, 2023,
doi: 10.1109/MRA.2023.3310865.

[52] D. Bianchi, M. G. Antonelli, C. Laschi, A. M. Sabatini, and E. Falotico,
“Learning-based inverse dynamic controller for throwing tasks with a soft
robotic arm,” in Proc. Int. Conf. Informat. Control, Automat., Robot., 2023,
pp. 424–432.

[53] B. Huang et al., “Dynamic handover: Throw and catch with bimanual
hands,” in Proc. Conf. Robot. Learn., 2023, pp. 1887–1902.

[54] J. Wu et al., “Tidybot: Personalized robot assistance with large language
models,” Auton. Robots, vol. 47, no. 8, pp. 1087–1102, 2023.

[55] F. Raptopoulos, M. Koskinopoulou, and M. Maniadakis, “Robotic pick-
and-toss facilitates urban waste sorting,” in Proc. IEEE Int. Conf. Automat.
Sci. Eng., 2020, pp. 1149–1154.

[56] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik, “Learning visual pre-
dictive models of physics for playing billiards,” 2015, arXiv:1511.07404.

[57] S. E. Navarro, B. Hein, and H. Wörn, “Capacitive tactile proximity sensing:
From signal processing to applications in manipulation and safe human-
robot interaction,” in Soft Robotics: Transferring Theory to Application.
Berlin, Germany: Springer, 2015, pp. 54–65.

[58] T. Senoo, Y. Yamakawa, S. Mizusawa, A. Namiki, M. Ishikawa, and
M. Shimojo, “Skillful manipulation based on high-speed sensory-motor
fusion,” in Proc. IEEE Int. Conf. Robot. Automat., 2009, pp. 1611–1612.

[59] Y. Zhu et al., “Reinforcement and imitation learning for diverse visuomotor
skills,” Robot.: Sci. Syst., 2018.

[60] L. Han, W. Xu, B. Li, and P. Kang, “Collision detection and coordinated
compliance control for a dual-arm robot without force/torque sensing
based on momentum observer,” IEEE/ASME Trans. Mechatron., vol. 24,
no. 5, pp. 2261–2272, Oct. 2019.

[61] B. S. Homberg, R. K. Katzschmann, M. R. Dogar, and D. Rus, “Robust
proprioceptive grasping with a soft robot hand,” Auton. Robots, vol. 43,
pp. 681–696, 2019.

[62] J. Lloyd and N. F. Lepora, “Goal-driven robotic pushing using tac-
tile and proprioceptive feedback,” IEEE Trans. Robot., vol. 38, no. 2,
pp. 1201–1212, Apr. 2021.

[63] S. Kim, A. Shukla, and A. Billard, “Catching objects in flight,” IEEE Trans.
Robot., vol. 30, no. 5, pp. 1049–1065, Oct. 2014.

[64] S. S. M. Salehian, M. Khoramshahi, and A. Billard, “A dynamical system
approach for softly catching a flying object: Theory and experiment,” IEEE
Trans. Robot., vol. 32, no. 2, pp. 462–471, Apr. 2016.

[65] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed batting using a multi-
jointed manipulator,” in Proc. IEEE Int. Conf. Robot. Automat., 2004,
pp. 1191–1196.

[66] H.-M. Joe, J. Lee, and J.-H. Oh, “Dynamic nonprehensile manipulation of
a moving object using a batting primitive,” Appl. Sci., vol. 11, no. 9, 2021,
Art. no. 3920.

[67] N. C. Dafle et al., “Regrasping objects using extrinsic dexterity,” in Proc.
IEEE Int. Conf. Robot. Automat., 2014, pp. 2560–2560.

[68] K. S. Bhat, S. M. Seitz, J. Popović, and P. K. Khosla, “Computing the
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