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Abstract

This paper presents a planner that enables robots to manipulate objects under changing external forces. Particularly, we focus
on the scenario where a human applies a sequence of forceful operations, e.g. cutting and drilling, on an object that is held by
arobot. The planner produces an efficient manipulation plan by choosing stable grasps on the object, by intelligently deciding
when the robot should change its grasp on the object as the external forces change, and by choosing subsequent grasps such
that they minimize the number of regrasps required in the long-term. Furthermore, as it switches from one grasp to the other,
the planner solves the bimanual regrasping in the air by using an alternating sequence of bimanual and unimanual grasps.
We also present a conic formulation to address force uncertainties inherent in human-applied external forces, using which
the planner can robustly assess the stability of a grasp configuration without sacrificing planning efficiency. We provide a
planner implementation on a dual-arm robot and present a variety of simulated and real human-robot experiments to show

the performance of our planner.

Keywords Manipulation planning - Forceful human-robot collaboration - Task-oriented grasping

1 Introduction

Most manipulation planning focuses on dealing with geomet-
ric constraints. In this work, we are interested in the scenario
where arobot manipulates an object not only under geometric
constraints, but also under the application of changing exter-
nal forces. Take the cutting task in Fig. 1, where a human is
cutting a circular piece off from a rectangular board with the
assistance of a robot system (Fig. 1a). Before the task, the
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human indicates the operation type (cutting) and the desired
cutting pattern (a circle) using a graphical interface (Fig. l1a-
Left). During the cutting task, the human applies external
forces on the board which change position, direction, and
even magnitude along the circular path. To assist the human
to perform the task, the robot changes its grasp on the object
multiple times (Fig. 1a—e) to position the object at expected
pose(s) and keep it stable against the changing cutting forces.
In this paper, we propose a planner that enables the robot to
manipulate objects under changing external forces like this.

This kind of human-robot interaction can be very useful
in manufacturing applications, where human workers need
to apply a sequence of forceful operations like polishing,
cutting and welding on workpieces, or in carpentry where
sequential forceful operations like drilling and inserting are
widely observed. To achieve this level of interaction, our
planner needs to solve three key problems:

First, our planner produces efficient manipulation plans by
minimizing the number of times the robot needs to change its
grasp on the object, namely regrasp. For example in Fig. 1,
the robot uses three different grasp configurations to keep
the object stable and accordingly changes its grippers’ posi-
tions on the object only two times (counting each gripper
separately) during the whole task. This is also a capability
demonstrated by humans in sequential manipulation tasks:
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(d) Grasp configuration 2 (e) Grasp configuration 3

Fig.1 The human is cutting a circular piece off from a board with the
assistance of a robot system

(b) The object bends due to exces-
sive torque

(a) The object slides due to insuf-
ficient frictional forces

Fig.2 Task failures during cutting (a) and drilling (b)

we regrasp when we need to, but we are also able to choose
grasps which are useful for long durations during a task.
This capability poses two closely related challenges to the
planner: grasp planning and regrasp minimization. Specif-
ically, the planner needs to decide not only how to grasp
the object, but also when to regrasp the object during the
course of interaction. A good choice of robot grasp on the
object may enable the robot to stabilize the object against
multiple sequential external forces, and thus reduce the need
of regrasping throughout the interaction, while a bad grasp,
however, would lead to frequent regrasps and therefore task
interruptions. Even worse, an inappropriate grasp may not be
able to stabilize the object against some external forces, thus
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bringing about task failures and risks during execution. For
example, the object may slip through the gripper fingers dur-
ing a cutting operation (Fig. 2a) due to insufficient frictional
forces between gripper fingers and object surface. Similarly,
a drilling operation may exert excessive torque around the
grippers due to a bad choice of grasp (Fig. 2b).

Second, our planner plans each regrasp. A regrasp requires
the robot to release its grippers off the object and then to grasp
the object at different positions. However, when the robot
releases a gripper, the object may become unstable under
external forces, e.g. gravity. Even if we assume the human
in Fig. 1b stops applying cutting forces during regrasps, the
object may still become unstable due to gravity. For example,
to regrasp the object from the configuration in Fig. 1b to the
one in Fig. 1d, if the robot directly releases its right gripper
from the object as shown in the small figure at the right bottom
of Fig. lc, a heavy object may slip within the remaining
gripper. Alternatively, the robot can first move the object to
an intermediate pose before releasing one gripper, so that the
remaining one can still hold the object stable until the robot
completes the regrasp. Figure 1c¢ shows such an intermediate
pose, at which the object is stable even when the right robot
gripper releases from it.

Third, our planner takes a robust approach to efficiently
assess the stability of a grasp configuration with the presence
of force uncertainties. The primary step towards manipu-
lation planning under changing external forces is to model
the external forces. A forceful operation, such as cutting a
board, ideally, exerts a determinate external force on a target
object. However, in practical applications such a human-
applied forceful operation would inevitably deviate from its
expected direction, which brings about force uncertainties
and thus challenges in finding appropriate robot grasps to
keep the target object stable. In this sense, to guarantee effec-
tive and robust planning, our planner chooses grasps which
can keep the object stable not only under the expected oper-
ation force, but also under all possible deviated operation
forces. To achieve this, our planner requires a model of the
forces to be applied as input in advance.

This work is a significantly extended and improved ver-
sion of our previous work on manipulation planning under
changing external forces (Chen et al. 2018b). Briefly, we
build our planner on the following key contributions:

— A graph-based formulation of manipulation planning
under changing external forces, which is referred to as
the operation graph hereafter, and a planning approach
which can simultaneously (i) produce a sequence of grasp
configurations to keep the object stable, and (ii) minimize
the need of regrasping during manipulation (Sect. 5.1).

— An algorithm to plan stable regrasps in the air by using
multiple cooperative manipulators. Different from most
existing work in regrasp planning (reviewed in Sect. 2),
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we focus on regrasping without an extra support structure.
This is achieved by reasoning about the object’s stabil-
ity under gravity while moving the object to go through
an alternating sequence of intermediate unimanual and
bimanual grasps (Sects. 5.2-5.4).

New contributions in this version includes:

— A conic model for external forces with the presence of
force deviations and a new theorem with detailed proof,
which formulates and significantly simplifies the stability
check using the conic model ( Sect. 4).

— A graphical user interface which ties in human task spec-
ification, on-demand manipulation planning and robot-
assisted fabrication together (Sect. 6).

— A new set of simulated and real-robot experiments with
anincreased number and variety of forceful tasks to verify
the performance of our planning framework (Sect. 7).

2 Related work

This work is mainly related to three areas which have been
well studied in the literature: grasp analysis, multi-step
manipulation planning and regrasping and forceful human-
robot collaboration.

2.1 Grasp analysis

The literature of grasp analysis investigates the question of
how stable a grasp is. General methods using the concept of
force-closurelform-closure answer whether a grasp would be
able to resist external wrenches acting along arbitrary direc-
tions. The grasp wrench space (Mishra et al. 1987; Borst
et al. 2004), for example the volume of its largest inscribed
sphere (Ferrari and Canny 1992), can be used as a metric to
measure the general quality of a grasp configuration.

The task-oriented grasping literature (Dang and Allen
2012; El-Khoury et al. 2015; Nikandrova and Kyrki 2015)
studies the problem of grasping an object for a particular
task, an important part of which is modelling the particular
external wrench expected on the target object during the task.
For example, Li and Sastry (1988) presents the task wrench
space as a metric to measure how good a grasp is under task-
relevant external wrenches. Other work in this area proposes
faster and more robust ways to compute task-based metrics
(Borst et al. 2004; Haschke et al. 2005; Lin and Sun 2015).
In general, given an external wrench, a set of contact points
on the object, and contact-models (Salisbury and Roth 1983)
(which provide constraints on the directions and magnitudes
of the wrenches that can be applied at the contacts), the ques-
tion of whether the set of contacts would be able to resist the
external wrench can be formulated as a linear matrix inequal-

ity problem (Han et al. 2000). Grasp analysis in the case of
compliant contact has also been investigated through mod-
elling the contact between a finger and the object as a spring
(Cutkosky and Kao 1989).

While the grasp analysis literature focuses on the stabil-
ity of a grasp on a target object, our work is also related
to cooperative manipulation, which focuses on the problem
of multiple manipulators cooperatively manipulating a com-
mon object (Takase 1974; Zheng and Luh 1989). To exert
a resultant wrench on the object, one can solve a set of lin-
ear equations to find the force/torque efforts required at the
manipulator joints (Uchiyama and Dauchez 1988, 1992).

‘We build on the formulations of grasp stability and coop-
erative manipulation to propose our grasp stability check
(Sect. 4.1), which involves checking the force/torque limits
at both the grip points and the manipulator joints.

2.2 Multi-step manipulation planning and
regrasping

In a typical problem of multi-step manipulation planning,
a robot manipulates an object through geometric obstacles
where the robot needs to ungrasp and regrasp the object
multiple times. The need to regrasp objects was recognized
even in the earliest manipulation systems (Lozano-Pérez et al.
1987; Tournassoud et al. 1987). Later, Siméon et al. (2004)
presented a planner viarandom sampling that solves the prob-
lem using an alternating sequence of transfer and transit
actions. More recently, planners have been proposed to solve
the planning problem in the case of multiple manipulators
for assembly-like tasks (Lertkultanon and Pham 2018; Wan
and Harada 2016; Dogar et al. 2019).

Most existing work on manipulation planning focuses on
dealing with geometric constraints, generating collision-free
robot motions to manipulate target objects. Our planner goes
beyond geometric constraints, taking into account the force
feature, which can be required in a large variety of sequential
manipulation tasks. In our task, for example, the robot is
required not only to move a target object to desired goal
position(s) under geometric constraints, but also to keep the
object stable under changing external forces.

Our work is also related to regrasp planning, especially the
case of dual-arm or multi-arm regrasping. Regrasp planning
involves finding a connected path over a sequence of sub-
manifolds in the composite configuration space. Roughly,
the basic flow of regrasp planning follows the pattern of
first building a manipulation graph (Alami et al. 1990) and
then searching the graph for regrasp sequences. Early stud-
ies (Rohrdanz and Wahl 1997; Stoeter et al. 1999) employed
grasp-placement tables to generate a sequence of motions for
regrasping. More recent works propose some other graph-
based representations, such as the regrasp graph (Wan and
Harada 2016, 2017). Most existing studies on regrasp plan-
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(a) Arawwoodenboard (b) Drillingeightholes

||~

(¢) Cutting off four legs

(d) Insertingfourpegs

Fig.3 The table assembly task consists of a continuous (e.g. cutting) or discrete (e.g. drilling) sequence of forceful operations on a target object

ning use object placements on extra supports for regrasping,
such as support surfaces (Wan and Harada 2016, 2017;
Chavan-Dafie and Rodriguez 2018) and other complex struc-
tures (Cao et al. 2016; Ma et al. 2018).

Different from the regrasping work mentioned above, our
work specifically focuses on the planning problem where
the robot can not place the object down on an extra support
surface, but only use its manipulators to cooperatively regrasp
the object under external forces, e.g. gravity.

Our problem can also be interpreted as an instance of
multi-modal manipulation planning (Bretl 2006; Hauser and
Latombe 2010; Lee et al. 2015), where each modality cor-
responds to a bimanual or unimanual grasp. In developing a
planner, we follow a similar strategy of first identifying inter-
sections among these different grasp modalities/manifolds,
and then planning motions to connect them. Our problem
can also be interpreted as a constrained set-cover problem
(Slavik 1996; Feige 1998), where the planner needs to find
a minimal sequence of grasp configurations to keep the tar-
get object stable under changing external forces in order. To
address the sequential nature inherent in the force sequence,
we formulate a weighted directed graph to search for the
optimal grasp sequence efficiently in Sect. 5.

2.3 Forceful human-robot collaboration

We are also interested in addressing multi-step manipulation
planning in a human-robot collaboration setting. Existing
work in forceful human-robot collaboration mostly focuses
on the control problem (Kosuge and Kazamura 1997; Rozo
et al. 2016; Abi-Farraj et al. 2017), solving for necessary
stiffness of manipulator joints as an external force is applied,
and assumes the object to be already stably grasped by the
robot. We approach the problem from the manipulation plan-
ning point of view and address the decision of what grasps
to use and when/how to switch between these grasps.

Other work in planning for human-robot collaboration
exists which mostly focuses on object transportation (Rozo
et al. 2016), handover (Sisbot and Alami 2012; Strabala
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et al. 2013; Maeda et al. 2017), or other applications where
robots attempt to avoid colliding with humans in the shared
workspace (Luo et al. 2018). To the best of our knowledge,
our work is the first one to take a planning approach to solve
the collaboration problem where the human applies sequen-
tial changing forces on an object.

2.4 Other work on robotic assembly

There is also recent work focusing on assembly planning.
Lipton et al. (2017, 2018) present a system for robot-
assisted carpentry. The system uses a team of mobile robots
to fabricate human-customised parts with standard carpen-
try tools and assumes two specialized stands to stabilize
lumbers against cutting forces. In another recent work by
Moriyama et al. (2019), a sampling-based assembly planner
was proposed to generate stable assembly pose under grav-
itational constraint. The main difference in our work is that
we consider changing external forces applied on an object
manipulated by a multi-arm robot.

3 Problem formulation

This section presents the definitions and fundamentals of the
planning problem discussed in this work.

3.1 Problem background

In this work, we refer to a complete forceful interaction as
a forceful task, which consists of a continuous or discrete
sequence of forceful operations. An example is the circu-
lar cutting task shown in Fig. 1, which we discretize into a
sequence of cutting operations tangential to the circle path.
Another example is the table assembly task illustrated in
Fig. 3, which requires the human to apply eight drilling
operations on a wooden board to create holes (Fig. 3b), a
continuous sequence of cutting operations to get chair legs
(Fig. 3c), and four inserting operations (Fig. 3d) to assemble
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the legs. In Sect. 6, we present a graphical user interface,
using which human users can easily specify such forceful
tasks, i.e. sequences of forceful operations, in an interactive
manner.

We define a forceful operation F as a generalized force
(force/torque)! f w.r.t. a tool frame, applied at a pose p on
a target object w.r.t. an object frame, which is at a desired
pose T € SE(3) w.r.t. a robot frame during the course of
the operation. That is, a forceful operation can be specified
as F = (f, p, T). Accordingly, a forceful task, comprising a
sequence of forceful operations, can be represented as

Fye, ={(fi. pi. To)} 1, M

where m indicates the number of involved operations. For
example, as illustrated in Fig. 4, we treat the circular cutting
task as a sequence of 20 cuttings via discretization.

We assume the robot has two manipulators, and each
manipulator is equipped with a parallel gripper.” Let Cy, C; be
the configuration space of the left and right arm respectively,
and C, C SE(3) be the object’s configuration space. The sys-
tem’s composite configuration space C can be then defined as
their Cartesian product C = C; x C; x C,, while each com-
posite configuration ¢ € C can be denoted asq = (qy, ¢, T),
where ¢ € C1, ¢, € Cr,and T € C,.

We define a robot grasp g, using the relative pose(s) of
gripper(s) on the target object. Specifically, a bimanual grasp
(g1, 8,) specifies poses of both left and right grippers, while
the unimanual grasps (g;), (g,) specify pose of only left and
right gripper respectively.

Note that there is redundancy in this definition. Specifi-
cally, a system configuration ¢ = (q;, ¢q,, T) can be mapped
to its corresponding grasp configuration g via forward kine-
matics. In this sense, the composite configuration space C
can be regarded as a collection of lower-dimensional grasp
manifolds, in which each manifold M(g) corresponds to a
particular robot grasp g on the object.

3.2 Overview of problem

Figure 4 illustrates our planning problem in detail using the
circular cutting task (Fig. 1).

The robot is supposed to position and stabilize a target
object under the application of a sequence of forceful opera-
tions {F;}?"_ . Givenasingle forceful operation F/, the planner
can find a feasible configuration ¢ by first searching for a

! Later in Sect. 4.1, we present a more realistic model where f is a
distribution of a set of possible generalized forces that can be applied
during an forceful operation, instead of a single idealized force.

2 This is for clarity of explanation and because the robot we use in our
experiments has two arms. However, our formulation is general and can
be easily extended to systems with more manipulators.

kinematically valid configuration ¢ and then checking the
force stability of the system, i.e. whether the robot and object
are stable under the operation force f at the configuration g.
This problem has been widely discussed in the literature on
grasp stability (Mishra et al. 1987; Borst et al. 2004; Ferrari
and Canny 1992) and cooperative manipulation (Uchiyama
and Dauchez 1988, 1992). We explain in detail how we per-
form the stability check in Sect. 4.

Then, given a forceful task consisting of a sequence of
forceful operations {F;}/",, the planner can simply find
one feasible grasp configuration ¢; for each operation F; €
{F;}/_, and accordingly, impose one configuration switch, or
broadly, a regrasp, between every two sequential operations.
In this case, the robot would need to perform two regrasps
(one regrasp for each gripper for a dual-arm robot) for each
operation F; and thus at least 2m regrasps in total for whole
task.

Alternatively, the robot can make the utmost of one con-
figuration ¢ against multiple forceful operations in a row,
which, as a result, would reduce the need of regrasping. This,
regrasp minimization, imposes an additional but practically
necessary requirement for efficient and smooth manipulation.
In this work, we explicitly address this as a main objective,
building planners to find stable manipulation plans with a
minimal number of regrasps.

We say a system configuration ¢ is stable against a
sequence of k forceful operations {F ,-}f.‘zl if, at g, the robot
and object are stable under any operation in {F; }f: |- Further,

we say a sequence of configurations {q j };l: | is stable against

;”zl, if the configura-

cover all forceful operations in {F;}/_; in

a sequence of forceful operations {F;}
tions in {qj }j:]
order, i.e. if q; is stable against {F, Fa, ..., Ft}, q, is sta-
ble against {F+1, Fr+2, ..., F;}, and so on, until g,, is stable
against {Fs41, Fg42, ..., Fyp},where l <k <l <..<s <
m.

For example, the three configurations {ql, q,, q3} shown
in Fig. 4 are stable against the 20 circular cutting operations
(g, is stable against F'; to Fg. g, is stable against Fg to
F 5. g5 is stable against F'13 to F2p). Note that different con-
figurations correspond to different grasps on the object. In
this sense, regrasp minimization can be achieved by find-
ing a minimal sequence of configurations (i.e. a minimal )
{a; };',zl, stable against the operations {F;}" .

In addition, the robot needs to move the object to go
through the planned configurations in {q ; }';zl successively,
using collision-free and stable trajectories {t; }?Zl. Specifi-
cally, each trajectory ¢; moves the system from ¢;_; to ¢;
(g, is the initial system configuration), which corresponds to
a constrained regrasping task.

In this context, we define a manipulation query as a
forceful task consisting of a sequence of forceful operations
{F;}!"_, to be applied on the object, together with a starting
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Stable
Configurations

Connectivity
of Grasps
12

Initial system configuration ¢,

Stable
Intersections

A circular cutting task {F;},

Connectivity
of Intersections

(a) Inputs {Fi}, . q0)

Fig.4 Overview of the approach. a A circular cutting task is represented as a sequence of 20 cutting operations {F;}:Z,

circle. b Layers of our planning approach

system configuration q,. Then, the manipulation planning
problem under changing external forces can be stated as:

Given the description of manipulation system and a
manipulation query ({F iy qo), find a minimal sequence
of grasp configurations {q j }:l: , and stable connecting tra-
jectories {¢; };l: | to position and stabilize the object under
forceful operations in {F;}?" | in order.

3.3 Overview of approach

The primary step towards efficient object manipulation under
sequential forceful operations is modelling and checking the
stability of forceful operations. We present how we model
and perform the stability check of forceful operations with
and without the presence of force deviations in Sect. 4.

— Idealized forceful operations and stability check: We
formulate an idealized operation model for forceful oper-
ations that can be applied exactly as expected. Using
the idealized operation model, we formulate the stability
check as a linear programming problem in Sect. 4.1.

— Deviated forceful operations and stability check: We
formulate a spherical cone model to address forceful
operations with the presence of force deviations. Fur-
ther, we propose a polyhedral cone approximation and
prove a theorem simplifying the stability check using the
spherical cone model in Sect. 4.2.
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Transfer

(b) Outputs ({q;}_, {£;}_))

20 tangential to the desired

Having a model of forceful operations as planning input,
we illustrate how our planner solves a manipulation query in
Fig. 4 with four layers and present details of each layer in
Sect. 5. Here we present a brief overview and explain how
these layers fit together:

— Stable configurations: Given an input manipulation query
({Fi}!, . qo). the planner first identifies a sequence of
configurations {g ; };=1 which are stable against {F;}"_ |,
and minimize the number of regrasps during manipula-
tion. InFig. 4, the three configurations {¢,, ¢,, 3} shown

in the top layer is such an example sequence.

The configurations generated by this layer are discrete
over the configuration space. The lower layers of the plan-
ner try to generate a sequence of stable motion trajectories

n .
{t;};_, to connect every two subsequent configurations

in {q j }?:1 starting from g, which corresponds to a

sequence of constrained regrasping tasks. This layer is
explained in detail in Sect. 5.1.

— Connectivity of grasps: Given any two subsequent con-
figurations ¢, g, € {g;}"_, produced by the previous
layer (e.g. ¢; and ¢, in Fig. 4), the planner identifies a
sequence of intermediate grasps {gi}?i |» Which moves
the robot grippers from the grasp g, in g, to the grasp g,
in g, (denoted as g; and 8n, respectively in {g; }:’il ).

The grasp sequence acts as an abstract plan to guide the
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subsequent search. The second layer in Fig. 4 shows such
an example grasp sequence {gs, g, gt}. It connects the
grasps in configurations ¢; and g, of the previous layer.
Note that there might be other feasible grasp sequences,
which go through different intermediate gripper contacts
as shown in Fig. 10. This layer is explained in detail in
Sect. 5.2.

— Sampling stable intersections of grasp manifolds: Given
any two neighbouring grasps g;, ;411 € {gi}:.lil, the
planner identifies a set of candidate stable regrasping con-
figurations by sampling within the intersection of their
grasp manifolds M(g;) (| M(g;;) (illustrated as the
blue points in Fig. 4). These configurations are checked
for stability against object gravity such that at each con-
figuration in the set, the transition from g; to g; .| can be
performed stably. The second configuration in the third
layer of Fig. 4 is such an example. Note that the object
is deliberately tilted from its initial pose, such that at the
configuration both unimanual and bimanual grasps can
hold the object stable under object gravity. That is, the
configuration is a stable transition/regrasping configura-
tion from grasp g; to grasp g; ;. This layer is explained
in detail in Sect. 5.3.

— Connectivity of manifold intersections: After obtaining a
sequence of stable regrasping configurations in the inter-
sections of the sequence of grasp manifolds, the fourth
layer performs collision-free and stability-constrained
motion planning within these manifolds, namely gener-
ating a sequence of stable and collision-free trajectories
{#;}’_, (illustrated as the red solid lines in Fig. 4). This
layer is explained in detail in Sect. 5.4.

Overall, the layered structure enables the planner to min-
imize the number of regrasps at the top layer. The planner
takes some form of lazy planning (Bohlin and Kavraki 2000;
Séanchez and Latombe 2003; Hauser 2015): It generates high-
level plans in upper layers to provide significant search
guidance to lower layers, leaving the time-consuming motion
planning to the final layer. If lower layers fail to find a plan,
the planer goes back to higher layers to generate new and
different high-level plans.

4 Force modelling and stability

This section presents our mathematical formulations of
forceful operations, and explains in detail how the planner
efficiently checks the force stability of a candidate configu-
ration ¢ under a certain forceful operation F, while with the
presence of force uncertainties. We refer to this process as
stability check herein.

T

(a) Cutting an object (b) Drilling a hole

Fig. 5 Ideally, a forceful operation F would generate a determinate
force f onto a target object along/about an expected operation axis

4.1 Idealized operations modelling and stability
check

In this section, we present an idealized operation model for

forceful operations that can be applied exactly as expected.
Later in the following section, we introduce a conic operation
model to address forceful operations with the presence of
force deviations.
Idealized Operation Model: I1deally, a forceful operation F,
e.g. cutting and drilling as illustrated in Fig. 5, qualita-
tively involves moving a certain tool(object) along/about an
expected operation axis (depicted as blue axes in Fig. 5)
to interact with a target object. Accordingly, if applied as
expected, the operation F would produce a determinate oper-
ation force f onto the target object along/about the expected
operation axis.

In this sense, the forceful operation F' can be simply mod-
elled as a single generalized force f applied on the target
object. For example, ideally, a cutting operation (Fig. 5a)
would generate a force along a cutting axis along the cut-
ting direction. Similarly, a drilling operation (Fig. 5b) would
generate a drilling force together with a rotational torque
along/about an axis perpendicular to the object surface.

Herein, we refer to this formulation F : (f, p, T) as the

idealized operation model. It assumes the operation F to be
exactly applied along/about an expected operation axis, at a
pose p on the target object, ideally modelling F as a single
generalized point in the wrench space.
Stability Check with Idealized Operation Model: Stability
check refers to checking if a grasp configuration g (along with
its corresponding grasp g) is stable against a certain force-
ful operation F. Specifically, we are interested in checking
whether:

— The robot manipulators are able to provide sufficient stiff-
ness to keep the robot and target object stable against F.
This requires the planner to check whether the required
torques T at manipulator joints exceed the torque limits.
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Fig. 6 Left: The planner checks if a candidate grasp configuration g
is able to provide a solution of torques T at manipulator joints and
wrenches f, at grip points to keep the target object stable against a
forceful operation F. Right: We approximate the grasp wrench space of
a grasp g with an axis-aligned box in the 6D wrench space

— The grippers are able to provide sufficient wrenches f, at
grip points to stabilize the target object in hand. This
requires the generalized external force (force/torque)
applied by F onto the object is inside the grasp wrench
space (Mishra et al. 1987), namely the set of all external
wrenches g can resist.

Consider a generalized force f, ; acting at the gripper of
the i-th manipulator, the required torques z; at manipula-
tor joints can be derived by 7; = Jing,i’ where J; is the
Jacobian matrix of i-th manipulator at a configuration q.

Furthermore, the symmetric formulation by Uchiyama
and Dauchez (1988, 1992), generalized the above model
to multiple manipulators cooperatively holding a common
object, describing the kinematic and static relationships
between an external force f applied at the object and its coun-
terparts acting at manipulator joints.

The symmetric formulation, however, leaves the forces
f, at grip points unconstrained. For the case of paral-
lel plate grippers we use in this work, as illustrated in
Fig. 6-right, we approximate the grasp wrench space of
a gripper-object system with a 6D axis-aligned box in
the wrench space. Specifically, we take the maximum
forces/torques along/about the three principal axes (XY-

Z) that are resistible at grip point as its limits f g?x’ gii“,
T .

max _ [p+ p+ pt R+ R+ R+ min _

where f7* = [Pf.P{.PY.RY.RY.RY| and £ =

[P;, P;, P, Ry, R;, RZ’]IT are the vectors of estimated
upper and lower limits at the i-th grip point. P;r/ v/ and R;r/ V2
are the force and torque limits respectively.

Imposing the additional constraints onto above formula-
tions, we model the stability check as finding a distribution
of T and f,, that satisfies:

Jfe=1
{ Wi, = —Rp)f 20
Tmin <1< Tmax’ fgﬁin ng Sfrgnax (2b)
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(b) Cutting deviation

(a) Drilling deviation

Fig.7 The operation force f may deviate from the expected operation
axis by a certain angle

where

- J=diag(J1, ..., J,)isthecomposite Jacobian matrix
at configuration q;

T T " T :
—fe = [ g,l’fg,2’ . "’fg,n:l andfg’l- is the generalized
force acting at i-th gripper;

- T= [r-{, r-zr, e, rl]Tand T, is the joint torque distribu-
tion of i-th manipulator;
- W = [W,W,,...,W,] (usually termed as the grasp

matrix (Mishra et al. 1987; Borst et al. 2004; Ferrari and
Canny 1992)) is a (6 x 6n) matrix mapping forces at
robot grippers to a resultant wrench onto the object w.r.t.
the robot frame;

— gMa/min are the upper and lower joint torque limits
respectively;

- f Z,mx/ ™ are the estimates of upper and lower wrench
limits at grip points respectively (i.e. our estimate of grasp
wrench space).

— R(p) transforms the external force f from the tool frame
to the common robot frame.

Equation 2 models stability check of an idealized forceful
operation as a linear programming, and thus can be solved,
e.g. using the Simplex method, to see if there exists any feasi-
ble solution of torques T at manipulator joints and wrenches
Jf at grip points. If it fails, we regard the configuration ¢ (and
its corresponding grasp g) unstable against the operation F.

4.2 Deviated operations modelling and stability
check

Conic operation model Obviously, the idealized model is
only applicable to cases where forceful operations can be pre-
cisely applied as expected. However, a forceful operation in
actual applications will inevitably deviate from its expected
operation axis to some extent, especially for human-applied
forceful operations. For example, as illustrated in Fig. 7a, for
a drilling operation, rather than an idealized force along the
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Fig.8 The spherical cone models the distribution of an operation force
f under deviations. The polyhedral cone circumscribes the spherical
cone, approximating it with a limited number of primitive forces

expected drilling axis, the actual applied force can deviate
towards any direction within a certain cone. Figure 7b shows
a similar observation of a cutting operation.

We take such force uncertainties into account, formulat-

ing a spherical cone model to address deviations in forceful
operations. As shown in Fig. 8, geometrically, the force devi-
ation is bounded by a spherical cone (illustrated as the grey
cone) centred with the expected operation force f (the dark
solid vector along the +z axis), while the actual operation
force can be any force within the cone.
Stability check with conic model The spherical cone mod-
els a forceful operation F as a continuous set of forces that
can possibly be applied by the operation, while the shape of
the cone can be extracted from experimental data. However,
such a continuous conic model poses a challenge for stabil-
ity check. Specifically, to check if a candidate configuration
q is able to keep an object stable under an operation F, all
possible deviated forces within the continuous spherical cone
must be checked for the sake of robustness, for which a naive
discretization approach would be computationally extremely
expensive.

To reduce the computational complexity but without
degenerating robustness of stability check using the spherical
cone model, we propose to approximate the spherical cone
with a np-edged circumscribed polyhedral cone (illustrated
as the outer polyhedron in Fig. 8).

As shown in Fig. 8, the polyhedral cone circumscribes
and bounds the spherical cone, including all deviated forces
in the spherical cone. It also contains a small set of additional
forces (the space between the polyhedral cone and the spher-
ical cone) due to the geometric relation between two cones,
which makes the polyhedral cone conservative by enlarging
the actual force distribution. This is advantageous in the sense
of producing no false positives, while the cost we pay may
be false negatives.

More importantly, the polyhedral cone is a convex cone
rooted at the origin. Then, given a forceful operation F, any

deviated force f’ within its corresponding spherical cone,
including the idealized operation force, can be denoted as a

linear combination of the ny edge forces [fl s eees an } (illus-

trated as the red edge vectors in Fig. 8) of its corresponding
polyhedral cone:

[ =Y kif; and YT ki <1, ki =0 3)

F
operation F. Then, we can easily define:

Here we refer to {f Ls ooos f n } as primitive forces for the

Theorem 1 Give a forceful operation F, if a grasp configu-
ration q is stable against all its primitive forces {}1 s eees fnp ,
then the configuration q is stable against any possible devi-
ated force f within its corresponding spherical cone, i.e. the
configuration q is stable against the operation F.

Proof Consider a grasp configuration ¢ and a determinate
external force f, in Sect. 4.1 we formulate the stability check
problem as a linear programming in Eq. 2. For the sake of
simplicity, here we denote the linear mapping from operation
force f to robot solution f = (z, f o) (i.e., manipulator joint
torques 7 and grasp wrenches f, ) as

j:LP(f)v fmin Sf Sfmax )

where LP denotes the linear mapping in Eq. 2a and f . fimax
denote robot limits in Eq. 2b. Herein, we assume f min <0
and f max > 0 for simplicity.

Then, given a forceful operation F, if q is stable against
all its primitive forces, the planner can find a solution f ; for
each primitive forcef,- meeting Eq. 4 (i = 1,2, ..., np).

In this context, for any force f’ = Z:’i | kf ; within the
spherical cone, we can always find a robot solution f/ =
SV kif ; that satisfies:

= np
J = Ziilki‘f i
= Y LPG) =LP(Y " kif ) = LP()
and
o= X
<P =300 haf i < 30 Kif s < P
That is, the configuration g can provide a solution f ' meeting

Eq. 4. In other words, the configuration q is stable against
any force f within the spherical cone. O

This theorem dramatically simplifies the stability check
using the spherical cone model but with guaranteed robust-
ness. Specifically, give a forceful operation F and a grasp
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o (.

(a) There exists a stable region in the configuration space % for a forceful operation F.

(b) An operation graph ¥,

Fig.9 We build an operation graph to search for a minimal sequence of configurations {q j} | stable against {F;}i_ |

configuration ¢, rather than checking all forces within a con-
tinuous spherical deviation cone, the planner can check only
a limited number of primitive forces { f Ls oes f nE } If all np
stability checks succeed, according to Theorem 1, the config-
uration ¢q is stable against any force in the spherical cone and
thus can be returned as a feasible configuration. In contrast,
if any of the nr stability checks fails, the planer can stop and
return ¢ as unstable without further checking.

The number nr can be chosen empirically. Note that, a
larger nr would make the polyhedral cone closer to the spher-
ical cone. However, this may require more time for stability
check, since for a forceful operation F and a candidate config-
uration ¢, in the worst case, stability check involves checking
all np primitive forces. A smaller nf, in contrast, would make
the polyhedral cone more conservative by containing addi-
tional forces outside the spherical cone. This might lead to the
loss of feasible solutions, since the polyhedral cone imposes
arelatively stronger constraint by covering additional forces
into stability check. In this sense, the choice of np is more
or less a trade-off between planning efficiency and the loss
of feasible solutions due to conservative approximation. In
Sect. 7.1, we present experiment results to show how the
choice of nr will affect the planning process.

5 Planning

This section presents details of our planner layer by layer as
illustrated in Fig. 4.

n

5.1 Generating {qj} . Stable against {F;};" ,

j=
The planner starts by generating a minimal sequence of grasp
configurations {q j };L: | that are stable against {F;}" | (illus-
trated as the sequence of three grasp configurations in the top
layer of Fig. 4).

@ Springer

n
j=

Given a forceful operation F, theoretically, there exists a
set of configurations in the configuration space C, i.e. a stable
region, in which all configurations are stable against the oper-
ation F. For example, in Fig. 9a, we show two subsequent
drilling operations F| and F; of the table assembly task in
Fig. 9b, while the red and green regions in the configuration
space C illustrate such stable regions for them respectively
(red region for F| and green region for F7). In this sense,
finding a sequence of system configurations stable against
{F;}/_, can be regarded as finding a sequence of configura-
tions to visit all stable regions for the operations in {F i}i."zl
in order.

Further, there might be intersections between these stable
regions. Within each intersection, any configuration would
be stable against the corresponding multiple operations. For
example, the configuration ¢” in Fig. 9 is stable against both
Fi and F», since ¢” lies inside the intersection of stable
regions for the operations F'1, F». We use these intersections
to minimize the number of regrasps in the sequence.

Specifically, to create such a minimal sequence of config-
urations {q j };': > our planner first samples a set of candidate
configurations in C. To sample configurations that are likely
to be stable against a variety of operations, i.e. configu-
rations in the intersections, the planner starts by sampling
grasps uniformly on the object. Then, using such a sam-
pled grasp configuration g and the desired object pose T,
the planner solves inverse-kinematics problem, which may
output multiple achievable solutions, and randomly picks one
configuration q.

For each sampled configuration ¢, the planner identifies
the operations in {F;}" , that the configuration g is stable
against. We then build an operation graph G, using these sta-
ble configurations as shown in Fig. 9b. The operation graph is
an acyclic directed weighted graph. Specifically, in the opera-
tion graph, each column corresponds to a forceful operation.
That is, the nodes in the i-th column are sampled config-
urations that are stable against the operation F;. Further,
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we define a link between every two nodes in neighbouring
columns, and associate the link with a weight using the num-
ber of gripper moves required from one configuration to the
other. For example, the weight for the link between the node
q” in the first column and the node ¢” in the second column is
zero, since they correspond to a same configuration and thus
no regrasp is required. Similarly, if two configurations differ
only by one gripper contact on the object, the weight for their
corresponding link is set to be one (e.g. ¢” and ¢¢). Other-
wise, the weight would be two for a dual arm robot. Note
that one can come up with other weighting schemes, e.g. one
that takes the overall motion trajectories for regrasping into
account.

At this point, our problem in this layer is formulated as
a graph search problem. Given a manipulation query, the
expected output is a path that starts from one node in the
leftmost column for operation F| and ends with a node in
the rightmost column for operation F,.

By searching the operation graph G,, e.g. using Dijkstra’s
algorithm, the planner can generate a candidate sequence
{q; }jzl with the least number of gripper moves based on
the current set of samples. Hereafter, we call this planner the
min-regrasp planner.

We provide the pseudo-code for this layer of the plan-
ner in Algorithm 1 in the procedure PlanStableSequence.
In line 1, the planner constructs the operation graph G, as
described above. In line 2, the planner searches the graph
(e.g. using Dijkstra’s algorithm) for a candidate sequence
{q j}j=1' Then the planner iterates over every subsequent
pair of configurations in {q ; };=0 (line 4), attempting to plan
a regrasp between them, which is explained below. If the
regrasp planning fails between any two configurations (line
6), the planner removes the failing link from the graph in
Fig. 9b (line 7), and then re-searches the graph to generate a
new candidate sequence (line 8).

Note that, building the whole operation graph G, requires
knowing all forceful operations {F;}" ; beforehand. How-
ever, there may be cases for which the forceful operations
are revealed progressively, e.g. one by one. In such cases,
the operation graph G, can be constructed as the next oper-
ation(s) is specified, and then be searched greedily. We call
this version the greedy planner.

In this layer, the planner generates a minimal sequence of
grasp configurations {q(i };:1 to keep the target stable under
the application of forceful operations {F;}" . Hereafter, the
planner generates collision-free and stable regrasping tra-
jectories {t | };’Z | to connect every two subsequent grasp
configurations in {g j}?zo (g is the initial system config-
uration), while ¢; corresponds to a contained regrasping task
fromgq;_; tog;.

Fig. 10 A grasp graph G,: Each node in the grasp graph represents a
bimanual or a unimanual grasp

5.2 Connectivity of grasps

Given any two subsequent configurations q,, ¢, €
{q j }’;: , generated above, rather than directly searching in
the high-dimensional composite configuration space for a
regrasping motion trajectory, the planner first generates a
grasp sequence to guide and constrain the following search
into a limited sequence of grasp manifolds.

Specifically, the planner starts by finding a sequence of
grasps {g; };E | on the object, which moves the system from
the grasp g to the grasp g,, where g, g, are the grasps at con-
figurations ¢ , ¢, and denoted as g and 8n, in the sequence

{gi}?i | respectively. For example, to regrasp from ¢, to g,
in the top layer of Fig. 4, the robot must go through a subse-
quence of intermediate grasps (e.g. {g’}) to switch from the
grasp g, to the grasp g, on the object.

In the case of dual-arm system used in this work, these
intermediate grasps are either bimanual or unimanual. We
represent the connectivity of these grasps as a grasp graph
G, as illustrated in Fig. 10. Each node in the graph G, rep-
resents a grasp on the object. A bimanual and a unimanual
grasp are connected if the unimanual grasp is contained by
the bimanual grasp. For example, we say a bimanual grasp
(g1, &) contains a unimanual grasp (g;), since they share a
common left gripper contact on the object. Building such a
grasp graph requires the generation of feasible grasps on the
object, which can be pre-specified or can be generated using
a general grasp planner, e.g. Miller and Allen (2004).

Then, the planner searches the grasp graph G, to get a
sequence of grasps {g; ;E 1» which connects the grasps g
and g; (denoted as g; and &n, respectively in the sequence

{g; };E 1) with an alternating sequence of bimanual and uni-
manual grasps. Figure 10 highlights in red the shortest grasp
sequence to move from the grasp g, to the grasp g;. Note that
there might be other longer feasible grasp sequences in the
graph as well.
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The grasp sequence {gl-}:.li | acts as an abstract plan to
guide and constrain the following motion planning into a
limited sequence of grasp manifolds { M (gi)}:.li | (illustrated
as the three foliations in the bottom of Fig. 4). In Algorithm 1,
the procedure PlanRegrasp outlines this process. On lines 1-
2, the planner builds the grasp graph G, and searches it to
obtain a sequence of grasps {g; };E | as described above.

The lower layers of the planner then try to plan the motion
from ¢, to g, through the planned grasps in {gi}?i ; (line
3). If the planner returns with a failure to connect any two
graspsg; andg; | in {g; }?il (line 4), then it removes the link
between these grasps (line 7), and perform the search again
to generate a new grasp sequence (line 8). If the connection
is successful, the planner returns the motion trajectory ¢ (line
10) for regrasping.

5.3 Sampling stable intersections of grasp

manifolds
Given a grasp sequence {g; }?g | generated in above layer, the
following layers of the planner attempt to generate stable
regrasping motions within the grasp manifolds { M (gi)}?i 1
However, the grasp sequence {g; }lni | provides necessary but
not sufficient condition of the connectivity of their corre-
sponding grasp manifolds.

Specifically, to regrasp from g; to g;, 1, the planner needs
to find at least one transition/regrasping configuration ¢
within the intersection of their grasp manifolds M(g;) N
M(g; ) (illustrated as the blue points in Fig. 4), such that
the configuration ¢ can be both kinematically feasible and
stable against the object gravity. Particularly in our task, the
transition from a bimanual grasp to a unimanual grasp may
fail, as the object might become unstable against object grav-
ity if the robot directly releases one gripper from the object.
Instead, the second configuration in the third layer of Fig. 4
shows a stable regrasping configuration, at which the robot
deliberately tilts the object pose before releasing its right
gripper for regrasping, such that the remaining gripper can
still hold the object stable (as the object gravity will be par-
tially resisted by the griper structure).

Our planner searches for such stable regrasping configu-
rations in the intersection of their grasp manifolds M (g;),
M(g; ) by random sampling. Specifically, in Algorithm 1,
the procedure Samplelntersection samples a set of k& such
configurations. To find one such configuration, the planner
first samples an object pose in the robot’s reachable space
(line 4). Then, it solves the inverse-kinematics for the biman-
ual grasp at the sampled object pose to get a fully-assigned
configuration ¢ (line 5). The planner checks (line 6) whether
both grasps g; and g, | are stable against gravity at g, using
the stability check described in Sect. 4.1. The stable config-
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uration q is then saved as a candidate regrasping connection
in the final solution path (line 7).

Algorithm 1 Manipulation Planning under Changing Forces

PlanStableSequence ({F;}™; , qo):
1: G, < Sample stable configurations in C and build an operation
graph as shown in Fig. 9b
: {qj};zl < GraphSearch(G,)

2
3: {qj};:() < Insert g to the beginning of {qj}j:]
4: for each subsequent ¢; and ¢, in {q; }jzo do
5 tj+1 < PlanRegrasp(q;.q;,)
6:  if PlanRegrasp failed then
7 Go < Remove failing edge from graph G,
8: Go to line 2
n n
9: return ({qj}jzl,{tj}j:l)

PlanRegrasp (g, q,):

1: Gy < Sample grasps and build graph in Fig. 10

g }:lil < GraphSearch(Gy, g, q,)

: t < Connect(qs, {g,«}:lil, q)

. if Connect failed or ¢ is None then

if maximum number of attempts reached then
return failure

Gy < Remove failing edge from graph G,

Go to line 2

: else

0:  returnt

—_

Connect (qs, {gi}?il, qt) :
1: if ng = 1 then

2 t < MotionPlan(gs, g,) using grasp &,
3 if MotionPlan successful then

4 return ¢

5:  else

6 return failure

7: § < Samplelntersection(gy, g,)

8: for each ¢ in S do

9:  t < MotionPlan(g,, ¢) using grasp g,
10:  if MotionPlan successful then

11: return ¢ + Connect(q, {g;}:%,. ¢,

12: return failure

Samplelntersection (g, g’) :
1: One of g and g’ must be bimanual. Assuming g.
2: S <~ {}
3: while S contains less than k elements do
4 x < Sample pose for object
5 q < Solve IK with object at x and grippers at g
6:  if q is stable against gravity with both g and g’ then
7 Addgto S
8: return §

5.4 Connectivity of sequence of manifold
intersections

In this layer, given two configurations ¢ and ¢, and stable
configurations sampled at the intersections of a sequence of
manifolds (i.e. the grasp manifolds corresponding to {g; }?il ),
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Fig. 11 The work-flow of human-robot collaboration in performing collaborative forceful tasks with the graphical user interface

the planner attempts to generate a collision-free and stable
trajectory ¢ that connects g, to g, through these manifolds
(illustrated as the red connected line segments in Fig. 4).

In Algorithm 1, the procedure Connect implements this
process as depth-first-search. Given a current configuration
q, and a sequence of grasps {g; }7i | (where g is the grasp in
q,), the planner samples the intersection of the first two grasp
manifolds in the sequence for a set of stable configurations
S (line 7). Then it tries to plan a motion from ¢, to a sampled
configuration ¢ € S (line 9). Note that this is a motion plan
within a single manifold and thus can be solved by existing
closed-chain or single-arm motion planners. However, the
object motion must be also stable against gravity, for which
the constrained motion planners (Berenson et al. 2011; Jaillet
and Porta 2013) can be used. If the motion planning succeeds,
the trajectory is returned along with a recursive call to the
depth-first-search. Lines 1-6 handle the simple case where
q, and ¢, are already in a same manifold.

6 A graphical user interface

Before presenting experiments to show the performance of
our planner, we present a graphical user interface to close the
loop of robot-assisted forceful manipulation.

Using the interface, (1) A human user can easily spec-
ify forceful tasks, i.e. sequences of operations on selected
objects; (2) The robot connected to the interface assists the
user in performing customized tasks by stably manipulating
the selected objects and providing operation instructions.

Fig. 11 illustrates the overall work-flow of the robot-
assisted manipulation with the user interface using the
circular cutting task. First, the human user specifies a desired
forceful task by choosing a tool(s) (e.g. a cutter or a drill)

to draw on a selected object. For example in Fig. 11, the
human first selects a cutter and a rectangular board, and then
draws a circle on the board to specify the circular cutting task
(Fig. 11-Task Specification). Once receiving confirmation,
the interface triggers a planning process (with our plan-
ners acting as the underlying planners) to generate efficient
manipulation plans as discussed in previous sections (Fig. 11-
Manipulation Planning).

After planning, the interface controls the robot to assist
the human in performing the specified forceful operations,
as well as providing operation instructions to the human
according to the manipulation plan (Fig. 11-Fabricating).

Specifically, during manipulation, the robot assistant
manipulates the target object to the planned configurations
in sequence and stabilizes it under the application of force-
ful operations. At each planned configuration, the interface
instructs the human user to apply a subsequence of resistible
forceful operations by visually displaying the subsequence
in both the interface and the robot head monitor (Fig. 11-
Operations to Be Applied). After completing the instructed
operations, the human presses a Regrasp button provided by
the interface to command the robot to go the next planned
configuration(s) (Fig. 1 1-Regrasp). The regrasp button is how
the human notifies the system that the subsequence of force-
ful operations are applied (In the future, we aim to improve
the system by automatic perception of human operations).
In this manner, the interface connects the robot assistant and
the human users to perform forceful tasks interactively. In
the next section, we present real robot experiments using the
interface.
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(a) The distribution of a cutting force.

S o

Operation force f
W o=
S (=}

o

w

o

—Jx
Ty
—fz

—/
—h
—fz

&

Operation force f

20

0 100 200 300 400
0" Time step ¢

100 200 300 400
Time step ¢

0
=5 .
fy ~10 "o fx

(b) The distribution of a drilling force.

w

10

Operation force f

@

0 100 200 300
Time step 1

(¢) The distribution of a puncturing force.

Fig.12 We collected experimental data from 30 operation trials to build data-driven conic models for forceful operations in our experiments. The

red polyhedral cones are the extracted models. The red dots inside the cones are the force data over one operation trial

7 Experiments and analysis

We present a variety of experiments in this section to verify

the performance of our proposed planners.
Experimental Setting: We applied our planners to the Baxter
robot from Rethink Robotics. Baxter has two 7-DOF manip-
ulators, each equipped with a parallel plate gripper. We tested
our planners in OpenRAVE (Diankov and Kuffner 2008) for
simulated experiments.

For Algorithm 1, we used the NetworkX (Hagberg et al.
2008) for graph construction and search, and BiRRT (Kuffner
and LaValle 2000) for motion planning. In our implementa-
tion, we set the maximum number of attempts to be 3 for the
procedure PlanRegrasp and the number of samples to be 20
for the procedure Samplelntersection.

We measured the grip force/torque limits (as explained
previously in Sect. 4.1) of a Baxter gripper griping a foam
board. Specifically, along each principal axis, we applied
an incremental amount of forces and torques on the foam
board that is gripped by the Baxter gripper, to find the
point when the object started to slide between the parallel
gripper plates or when the object tilted more than 5° due
to finger structure deformation. In this manner, we tested
the grip limits as Ig’f';-‘x = [13N,40 N,100 N, 0.5 Nm,
0.1 Nm,0.15Nm] and fpi' = [-13N,-
40 N,—13N,—0.5 Nm,—0.1 Nm,—0.15 Nm]>.
Experiments Overview: We conducted three categories of

experimental studies, including:

— Modelling Forceful Operations: We collected experimen-
tal data to capture the conic distributions of forceful

3 Along the 4z direction, the object can rest against the gripper palm,
therefore the planner adopted a large force limit (100 N) for P}
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operations involved in our experiments and studied the
effect of using conic model on stability check (Sect. 7.1);

— Simulated Experiments: We tested our planner on a vari-
ety of forceful tasks to verify its performance in terms
of minimizing the number of regrasps, planning stable
regrasps and time efficiency (Sect. 7.2);

— Real Experiments: We did a set of real human-robot
experiments to further study the feasibility of our plan-
ner in real forceful human-robot applications. We used
the graphical user interface presented in Sect. 6 for task
specification and robot-assisted fabrication (Sect. 7.3).

7.1 Modelling forceful operations

We tested our planners on three types of forceful opera-
tions, cutting, puncturing and drilling on rigid foam boards as
shown in Fig. 12. We collected experimental data to capture
their force distributions in the wrench space.

As discussed in Sect. 4.1, using the idealized model:

— A cutting operation applies a pure cutting force along an
expected cutting axis;

— A puncturing operation applies a pure intruding force
along an expected puncturing axis;

— A drilling operation applies a rotational torque about an
expected drilling axis plus a drilling force along the axis.

Therefore, the idealized model requires identifying the max-
imum operation forces to extract values of parameters f, and
7, from experimental data.

While for the conic model, we need to determine their
conic deviation ranges, i.e. extracting values of parame-
ters fy/y/; and Ty;y/,. To do this, we applied each type of
operations 30 times separately, collecting force data using a
6D force/torque sensor (FT150 from Robotiq) as shown in
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Table 1 Numbers of candidate configurations remaining stable after
being checked using the conic model with different ng

Cutting Drilling Puncturing
Idealized model 50 50 50
Conic model np =4 35 40 43
ng =8 40 42 46

Fig. 12. During each trial, we recorded the force and torque
values at different time steps at the rate reported by the sensor.
This means, for each operation trial, we collected between
400-500 force data points. For each category, we compute the
polyhedral cone as discussed in Sect. 4.1 which contains the
force distributions over all time steps over the 30 operation
trials. In Fig. 12, each sub-figure shows the distribution of
operation forces in one operation trial*. The red polyhedral
cone in the lower right of each sub-figure is the correspond-
ing polyhedral cone model (nr = 4) extracted for from all
force data of 30 trials.

Specifically, for cutting operations, we measured f, =

45N, fx =4 N and f, = 6 N. For drilling operations, f, =
19N, fy =6Nand f, = 6 N.Thetorque generated by drill
bit rotation is much smaller than the one generated by drilling
force, thus we simply neglect it and assume 7, = 7y, = 7, =
0 Nm. For puncturing operations, f, = 16 N, fy = 2N
and fy =2N.
Effect of Conic Model on Stability Check: To test the effect
of conic model on stability check, for each type of opera-
tions above, we test 20 forceful operations evenly distributed
on the object surface. For each forceful operation, we first
generate 50 stable configurations using the idealized model
(i.e. 50 different complete robot configurations grasping the
object stably against the idealized force). We then check the
stability of these configurations again using the conic model
(50 * 20 for the 20 operations, giving a total of 1000 stability
checks for each operation type) with np = 4 and np = 8§
respectively.

The numbers of configurations remaining feasible out of
the 50 configurations (which are feasible using the idealized
model) are shown in Table 1. Note that the number of feasible
configurations for ng = 8 is larger than for ng = 4. This is
reasonable, since for a forceful operation, a larger np will
make the polyhedral cone approximation closer to its real
spherical cone distribution.

In the following experiments, we used the conic model for
robust stability check and set the number of primitive forces
nr = 4 in modelling involved forceful operations.

4 In Fig. 12 we show the force distribution of one operation trial for
the sake of visual clarity, but the models are extracted from data of 30
trials.

7.2 Planning performance in simulated experiments

In simulated experiments, we implemented our planner on
three categories of forceful tasks, including

— Random-puncturing Each random-puncturing task con-
tains 10 puncturings randomly distributed on the surface
of a foam board. An example is shown in Fig. 13;

— V-puncturing Each task consists of 40 puncturing oper-
ations along two random line segments meeting at a
common point. An example is shown in Figs. 14 and 15;

— Dirilling and cutting Each task involves 4 drillings and a
subsequence of cutting operations as shown in Fig. 18.

We generated 100 random tasks for each task category above.
Analysis of number of regrasps First, we compared the per-
formance of our planners, min-regrasp and greedy, with a
random planner in reducing the number of regrasps. The
random planner acts as a baseline approach. For the first
forceful operation, the random planner performs sampling
in the configuration space until it finds the first stable con-
figuration against the operation. Then, for any subsequent
operations, it first checks whether the current configuration
is still stable. If not, it falls back to random sampling.

Table 2 shows the average number of regrasps generated
by the three planners over 100 random forceful tasks. For
the random-puncturing tasks, the random planner generates
almost a new grasp and thus one bimanual regrasp for every
forceful operation (maximum 20 regrasps for 10 operations).
The min-regrasp dramatically reduces the number of regrasps
(5.4 regrasps on average for 10 operations, an example solu-
tion is shown in Fig. 13). The greedy planner also performs
well in reducing regrasps (8.2 regrasps on average).

Similarly, for the V-puncturing tasks, the random plan-
ner generates plans with a large number of regrasps (52.9
regrasps for the 40 operations of a V-puncturing task on aver-
age), while the min-regrasp planner just needs 1.6 regrasps on
average (an example solution is shown in Fig. 15). The greedy
planner also shows a much better performance compared
with the random planner, but still worse than the min-regrasp
planner. For example, as shown in Fig. 14, one solution gen-
erated by the greedy planner requires the grippers to climb
along the edges of the board up and down frequently to follow
the movement of the puncturing operations, while the min-
regrasp planner comes up with a plan of just two regrasps in
Fig. 15. Similar results can also be found for the drilling and
cutting tasks.

We also counted the number of samples the random plan-
ner needed before it found a stable grasp. On average, the
random planner needed 41.1 samples for each forceful opera-
tion above, showing that planning is necessary, since random
grasps have little chance of being feasible.
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Fig. 13 A grasp sequence by the min-regrasp planner for a random-puncturing task. The dark points indicate the puncturing operations planned to

be applied during the current grasp. The arrows indicate regrasp actions

Fig. 14 A grasp sequence by the greedy planner for a V-puncturing task. The dark points indicate the puncturing operations planned to be applied

during the current grasp. The arrows indicate regrasp actions

Table 2 Numbers of regrasps
(with standard deviations in

Random-puncturing

V-puncturing Drilling and cutting

parentheses) of three planners

- Random 19.7(0.7)
on three categories of tasks
Greedy 8.2(2.1)
Min-regrasp 5.4(1.3)

52.9(10.1) 5.8(2.1)
5.3(1.9) 3.1(0.8)
1.6(0.6) 2.0(0.5)

Our planners are generalized to common objects, not lim-
ited to grasping only rectangular objects. To demonstrate this,
we tested the min-regrasp planner with a sequence of 40 cir-
cular puncturing operations applied on a round board. A plan
with three grasps (two regrasps) is shown in Fig. 16.
Analysis of Planning Stable Regrasps: We also tested the
performance of our planner on light and heavy objects respec-
tively. For light objects, the robot can perform regrasps by
directly releasing and re-placing its grippers on the object,
whereas the robot might need to move a heavy object to cer-
tain intermediate poses before regrasping. Similarly, we ran
the planner on the 100 forceful tasks for each category as
discussed above.

Figure 17 shows an example sequence to regrasp a heavy
object. For a light object, the robot can stably grasp and move
the object using just a single gripper at most reachable con-
figurations. Thus, mostly, the robot can directly release off
to regrasp the object, without the need of reorienting it to
intermediate configurations. However, for a heavy object, as
discussed previously, the object may slip down between grip-
per fingers if the robot directly releases one gripper. That is,
the robot needs to find intermediate configurations at which
one single gripper is still enough to keep the object stable. In

@ Springer

Fig. 15 A plan by the min-regrasp planner for a V-puncturing task
which contains two regrasps

Fig. 17, the robot first transfers the object to configurations in
Fig. 17b,d before releasing one gripper. After releasing, most
object weight will be resisted by the forces arising from grip-
per finger structure as shown in Fig. 17c, e, which are much
larger than the frictional forces between the object and finger
surfaces.

Analysis of Planning Time: Table 3 shows the average plan-
ning time each layer of the planner takes, including time
for generating stable grasp sequences (StabSeq for short in
Table 3), time for generating and searching the grasp graph
combined with sampling intersections (Samplnt, for short)
and motion planning (Connect, for short). As the table shows,
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Fig. 16 A grasp sequence by the min-regrasp planner for 40 circular
puncturing operations on a round board

most time is spent on motion planing, while the time for
planning stable grasp sequences and sampling intersections
is negligible. Planning for the heavy objects takes longer
time since finding stable regrasp configurations and motion
trajectories is more difficult.

In addition, it is notable that given a forceful task, the time
for motion planning (and thus the overall planning time) is
nearly proportional to the number of regrasps (which can be
found in Table 2) required in the corresponding manipula-
tion plan, not to the number of involved forceful operations,
as each regrasp corresponds to a motion plan request. For
example, for a V-Puncturing task involving 40 forceful oper-
ations, the overall planning time is about 85 s for a solution
of 1.6 regrasps on average, while for a Random-Puncturing
task involving 10 forceful operations, the overall planning
time is about 310 s for a solution of 5.4 regrasps.

7.3 Planning performance in human-robot
experiments

We did a variety of real human-robot experiments to further
verify the feasibility of our system in real applications. A
recorded video of all these experiments can be found in the
multimedia extension of this paper.

Figures 1, 15 and 18 show the implementations of forceful
tasks discussed above. Figure 20 shows a solution by the
min-regrasp planner for the table assembly task discussed in
Fig. 3, which consists of a large sequence of drilling, cutting

(b) Inter. config.

(a) Start config. (c) Release

(d) Regrasp

and inserting operations. As shown, the solution involves
only 3 different grasp configurations through the whole task.

We also performed 10 human-robot experiments using the
graphical user interface introduced in Sect. 6. Before these
experiments, 10 human participants were fully explained the
usage of the interface and the robot system. Then they spec-
ified and performed preferred forceful tasks via the interface
as explained in Sect. 6. Figure 19 shows one such experiment,
where the user customizes and then cuts a square piece off
from the board. During these experiments, we regarded an
interaction as failure if it had any unexpected interruption,
e.g. unstable operations due to inappropriate grasp. Among
these ten experiments, nine interactions succeeded with a
small number of regrasps ranging from 1 to 4. One interac-
tion failed due to a collision between the robot gripper and
the object during regrasping, which can be seen from time
13:18 to 13:24 in the video accompanying this paper. This
is mainly because of the uncertainty in the robot system and
can be improved by automatic perception of system motion.

We also collected the interaction time of each part dur-
ing interactions. Over these 10 experiments, on average,
the task specification took 39.5(3.5)s (standard variance is
in parentheses). The manipulation planning took 44.5(9.3) s
and the Fabrication took 191.3(44.5)s.

8 Conclusion and future work

Our planning approach allows a multi-arm robotic system to
stably and fluidly interact with a human co-worker applying
forceful operations on an object. Importantly, the planner
minimizes the required regrasps—which in turn are per-
formed without any support surface. The proposed planners
are capable of addressing uncertainties in the forceful interac-
tion, inherent to human-centred applications. The system has
been successfully assessed in different human-robot experi-

(e) Release (f) Regrasp  (g) Target config.

Fig. 17 Regrasping a heavy object. The robot moves the heavy object to some intermediate poses before regrasping

Table 3 Planning time for both heavy and light objects

Random-puncturing

V-puncturing

Drilling and cutting

StabSeq Samplnt Connect StabSeq Samplnt Connect StabSeq Samplnt Connect
Heavy 1.8(0.1) 12.6(0.9) 299.1(40.3) 5.1(0.5) 3.3(0.3) 77.2(11.5) 0.7(0.1) 3.5(0.2) 94.1(16.2)
Light 1.6(0.2) \ 107.5(10.1) 4.9(0.6) \ 29.8(5.6) 0.8(0.1) \ 47.5(7.8)

Times are in seconds. Standard deviations are in parentheses
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- -

(a) ¢;-Drilling 1&2 (b) g,-Drilling 3

(¢) g,-Drilling 4

Fig. 18 A grasp sequence by the min-regrasp planner for the Drilling and Cutting task

1

(a) Task Speciﬁca;ion (b) ¢,-Cutting top side

Fig. 19 Human-robot collaboration-a square cutting task

(d) g»-Inserting front legs

(¢) g,-Cutting bottom side

(e) g5-Drilling holes for back legs

)|

(f) g3-Inserting back legs

Fig.20 A solution with only 3 regrasps by the min-regrasp planner for the table assembly task in Fig. 3

ments. We believe the planning system presented here can be
a key component in a human-robot collaboration framework.

There are multiple ways the proposed methods and system
can be improved.

In the human-robot experiments, we can see sometimes
that the planner generates system configurations that are rel-
atively uncomfortable for humans. For example, the robot in
Fig. 20a holds the board at a configuration stable against a
large sequence of drilling and cutting operations. However,
this configuration makes the human raise a heavy drill at a

@ Springer

laborious arm configuration. In future work, we aim to take
human comfort factors (e.g. the human kinematics (Chen
et al. 2018a)) into account during planning, improving the
human experience both physically and psychologically while
in collaboration with the robot.

In addition, our experiments show that planning time for
such tasks can still take tens of seconds. Our quantitative
assessment of the simulated experiments has shown that the
time efficiency of the planner is limited mostly by the speed
of the low-level constrained motion planners, which leaves
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room for improvement in future work to either speed up these
individual motion plans, or to reduce the number of such
motion plan queries, i.e. the number of regrasps.

The system presented here can also be improved such that
both the robot and the human move simultaneously to adapt
to each other’s motion. For example, in Fig. 1, while the
human cuts the board, the robot can rotate the board actively
to reduce human motion, as well as improving human com-
fort. This requires real-time tracking of the human operations
and quickly computing system configurations that are stable
against them.

A perception system can also allow us to improve the
communication and coordination between the human and
the robot. Particularly, in our setting, the robot needs to
detect when the human performs certain forceful operations.
In this work this is indicated by the human via a graphical
interface. Even though a satisfying level of coordination has
been achieved through the interface, we aim to integrate a
perception component into our system to further improve
the overall fluidity, e.g. using haptic feedback of the robot
grippers to detect when the human performs the planned
operations. Furthermore, not only the immediate perception
of human action, but also the prediction of human inten-
tion/motion (Mainprice and Berenson 2013; Knepper et al.
2017) can also benefit forceful human-robot collaboration.

A perception system for the object and robot motion, e.g.
a vision-based tracking system, can also be easily integrated
to improve the motion accuracy for regrasping.

References

Abi-Farraj, F.,, Osa, T., Peters, N. P. J., Neumann, G., & Giordano, P. R.
(2017). A learning-based shared control architecture for interactive
task execution. In 2017 IEEE international conference on robotics
and automation (ICRA). IEEE.

Alami, R., Simeon, T., & Laumond, J. P. (1990). A geometrical approach
to planning manipulation tasks. the case of discrete placements and
grasps. In The fifth international symposium on Robotics research
(pp 453-463). MIT Press.

Berenson, D., Srinivasa, S., & Kuffner, J. (2011). Task space regions: A
framework for pose-constrained manipulation planning. The Inter-
national Journal of Robotics Research, 30(12), 1435-1460.

Bohlin, R., & Kavraki, L. E. (2000). Path planning using lazy prm. In
Proceedings 2000 ICRA. Millennium conference. IEEE interna-
tional conference on robotics and automation. Symposia proceed-
ings (Cat. No. 00CH37065) (Vol. 1, pp. 521-528). IEEE

Borst, C., Fischer, M., & Hirzinger, G. (2004). Grasp planning: How to
choose a suitable task wrench space. In IEEE International Con-
ference on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004 (Vol. 1, pp. 319-325). IEEE

Bretl, T. (2006). Motion planning of multi-limbed robots subject to
equilibrium constraints: The free-climbing robot problem. The
International Journal of Robotics Research, 25(4), 317-342.

Cao, C., Wan, W., Pan, J., & Harada, K. (2016). Analyzing the utility of a
support pin in sequential robotic manipulation. In 2016 IEEFE inter-
national conference on robotics and automation (ICRA). IEEE.

Chavan-Dafie, N., & Rodriguez, A. (2018). Regrasping by fixtureless
fixturing. In: 2018 IEEE 14th international conference on automa-
tion science and engineering (CASE) (pp. 122-129). IEEE.

Chen, L., Figueredo, L., & Dogar, M. (2018a). Planning for muscu-
lar and peripersonal-space comfort during human-robot forceful
collaboration. In Proceedings of Humanoids 2018. IEEE.

Chen, L., Figueredo, L.F., & Dogar, M. (2018b). Manipulation planning
under changing external forces. In 2018 IEEE/RSJ international
conference on intelligent robots and systems (IROS) (pp. 3503—
3510). IEEE.

Cutkosky, M. R., & Kao, 1. (1989). Computing and controlling com-
pliance of a robotic hand. /EEE Transactions on Robotics and
Automation, 5(2), 151-165.

Dang, H. & Allen, P.K. (2012). Semantic grasping: Planning robotic
grasps functionally suitable for an object manipulation task. In
2012 IEEE/RSJ international conference on intelligent robots and
systems (pp. 1311-1317). IEEE.

Diankov, R., & Kuffner, J. (2008). Openrave: A planning architecture for
autonomous robotics. Tech Rep CMU-RI-TR-08-34 79 (Robotics
Institute, Pittsburgh, PA).

Dogar, M., Spielberg, A., Baker, S., & Rus, D. (2019). Multi-robot grasp
planning for sequential assembly operations. Autonomous Robots,
43(3), 649-664.

El-Khoury, S., De Souza, R., & Billard, A. (2015). On computing task-
oriented grasps. Robotics and Autonomous Systems, 66, 145—158.

Feige, U. (1998). A threshold of In n for approximating set cover. Jour-
nal of the ACM, 45(4), 634-652.

Ferrari, C., & Canny, J.F. (1992). Planning optimal grasps. In /EEE
international conference on robotics and automation, 1992. Pro-
ceedings (Vol. 3, pp. 2290-2295). IEEE.

Hagberg, A., Swart, P. & Chult, D. S. (2008), Exploring network struc-
ture, dynamics, and function using networkx. In 7ech. rep.. Los
Alamos National Lab.(LANL), Los Alamos, NM (United States).

Han, L., Trinkle, J. C., & Li, Z. X. (2000). Grasp analysis as linear
matrix inequality problems. /EEE Transactions on Robotics and
Automation, 16(6), 663-674.

Haschke, R., Steil, J. J., Steuwer, 1., & Ritter, H. J. (2005) Task-oriented
quality measures for dextrous grasping. In: CIRA (pp. 689-694),
Citeseer.

Hauser K (2015) Lazy collision checking in asymptotically-optimal
motion planning. In 2015 IEEE international conference on
robotics and automation (ICRA) (pp. 2951-2957). IEEE.

Hauser, K., & Latombe, J. C. (2010). Multi-modal motion planning
in non-expansive spaces. The International Journal of Robotics
Research, 29(7), 897-915.

Jaillet, L., & Porta, J. M. (2013). Path planning under kinematic con-
straints by rapidly exploring manifolds. /EEE Transactions on
Robotics, 29(1), 105-117.

Knepper, R. A., Mavrogiannis, C. I., Proft, J., & Liang, C. (2017).
Implicit communication in a joint action. In Proceedings of the
2017 ACM/IEEE international conference on human-robot inter-
action (pp. 283-292).

Kosuge, K. & Kazamura, N. (1997) Control of arobot handling an object
in cooperation with a human. In Proceedings 6th IEEE interna-
tional workshop on robot and human communication. RO-MAN’97
SENDAI. IEEE.

Kuffner Jr, J. J., & LaValle, S. M. (2000). Rrt-connect: An efficient
approach to single-query path planning. In /CRA (Vol. 2).

Lee, G., Lozano-Pérez, T. & Kaelbling, L. P. (2015) Hierarchical
planning for multi-contact non-prehensile manipulation. In 2075
IEEE/RSJ international conference on intelligent robots and sys-
tems. IEEE.

Lertkultanon, P., & Pham, Q. C. (2018). A certified-complete bimanual
manipulation planner. /[EEE Transactions on Automation Science
and Engineering, 15(3), 1355-1368.

@ Springer



1268

Autonomous Robots (2020) 44:1249-1269

Li, Z., & Sastry, S. S. (1988). Task-oriented optimal grasping by multi-
fingered robot hands. IEEE Journal on Robotics and Automation,
4(1), 32-44.

Lin, Y., & Sun, Y. (2015). Grasp planning to maximize task coverage.
The International Journal of Robotics Research, 34(9), 1195—
1210.

Lipton, J.I., Manchester, Z., & Rus, D. (2017). Planning cuts for mobile
robots with bladed tools. In 2017 IEEE international conference
on robotics and automation (ICRA). IEEE.

Lipton, J.I., Schulz, A., Spielberg, A., Trueba, L.H., Matusik, W., &
Rus, D. (2018). Robot assisted carpentry for mass customization.
In 2018 IEEE international conference on robotics and automation
(ICRA) (pp. 1-8). IEEE.

Lozano-Pérez, T., Jones, J., Mazer, E., O’Donnell, P., Grimson, W.,
Tournassoud, P. & Lanusse, A. (1987) Handey: A robot system that
recognizes, plans, and manipulates. In Proceedings. 1987 IEEE
international conference on robotics and automation (Vol. 4, pp.
843-849). IEEE.

Luo, R., Hayne, R., & Berenson, D. (2018). Unsupervised early predic-
tion of human reaching for human-robot collaboration in shared
workspaces. Autonomous Robots, 42(3), 631-648.

Ma, J., Wan, W., Harada, K., Zhu, Q., & Liu, H. (2018). Regrasp plan-
ning using stable object poses supported by complex structure.
IEEE Transactions on Cognitive and Developmental Systems, 11,
257-2609.

Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O.,
& Peters, J. (2017). Probabilistic movement primitives for coordi-
nation of multiple human-robot collaborative tasks. Autonomous
Robots, 41(3), 593-612.

Mainprice, J. & Berenson, D. (2013). Human-robot collaborative
manipulation planning using early prediction of human motion.
In 2013 IEEE/RSJ international conference on intelligent robots
and systems (pp. 299-306). IEEE.

Miller, A. T., & Allen, P. K. (2004). Graspit! a versatile simulator for
robotic grasping. IEEE Robotics & Automation Magazine, 11(4),
110-122.

Mishra, B., Schwartz, J. T., & Sharir, M. (1987). On the existence and
synthesis of multifinger positive grips. Algorithmica, 2(1-4), 541—
558.

Moriyama, R., Wan, W. & Harada, K. (2019). Dual-arm assembly
planning considering gravitational constraints. arXiv preprint:
arXiv:1903.00646.

Nikandrova, E., & Kyrki, V. (2015). Category-based task specific grasp-
ing. Robotics and Autonomous Systems, 70, 25-35.

Rohrdanz, F., & Wahl, F. M. (1997). Generating and evaluating regrasp
operations. In Proceedings of international conference on robotics
and automation (Vol. 3). IEEE.

Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., & Torras, C.
(2016). Learning physical collaborative robot behaviors from
human demonstrations. IEEE Transactions on Robotics.

Salisbury, J. K., & Roth, B. (1983). Kinematic and force analysis of
articulated mechanical hands. Journal of Mechanisms, Transmis-
sions, and Automation in Design, 105(1), 35-41.

Sanchez, G., & Latombe, J. C. (2003). A single-query bi-directional
probabilistic roadmap planner with lazy collision checking. In:
Robotics research (pp. 403—417). Springer.

Siméon, T., Laumond, J. P., Cortés, J., & Sahbani, A. (2004). Manip-
ulation planning with probabilistic roadmaps. The International
Journal of Robotics Research, 23(7-8), 729-746.

Sisbot, E. A., & Alami, R. (2012). A human-aware manipulation plan-
ner. IEEE Transactions on Robotics, 28(5), 1045-1057.

Slavik, P. (1996). A tight analysis of the greedy algorithm for set cover.
In Proceedings of the twenty-eighth annual ACM symposium on
theory of computing (pp. 435-441)

Stoeter, S. A., Voss, S., Papanikolopoulos, N. P., & Mosemann, H.
(1999). Planning of regrasp operations. In Proceedings 1999 IEEE

@ Springer

international conference on robotics and automation (Cat. No.
99CH36288C) (Vol 1, pp. 245-250). IEEE.

Strabala, K. W., Lee, M. K., Dragan, A. D., Forlizzi, J. L., Srinivasa, S.,
Cakmak, M., et al. (2013). Towards seamless human-robot han-
dovers. Journal of Human-Robot Interaction, 2(1), 112—-132.

Takase, K. (1974). The design of an articulated manipulator with torque
control ability. In Proc. 4th int. symp. on industrial robots. Tokyo.

Tournassoud, P., Lozano-Pérez, T. & Mazer, E. (1987). Regrasping. In
Proceedings. 1987 IEEE international conference on robotics and
automation (Vol. 4, pp. 1924-1928). IEEE.

Uchiyama M. & Dauchez, P. (1988) A symmetric hybrid position/force
control scheme for the coordination of two robots. In Proceedings.
1988 IEEE international conference on robotics and automation
(pp. 350-356). IEEE.

Uchiyama, M., & Dauchez, P. (1992). Symmetric kinematic formula-
tion and non-master/slave coordinated control of two-arm robots.
Advanced Robotics, 7, 361-383.

Wan, W., & Harada, K. (2016). Integrated assembly and motion plan-
ning using regrasp graphs. Robotics and Biomimetics, 3(1), 1-11.

Wan, W., & Harada, K. (2017). Regrasp planning using 10,000 s of
grasps. In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS) (pp. 1929-1936). IEEE

Zheng, Y. F.,, & Luh, J. (1989). Optimal load distribution for two indus-
trial robots handling a single object. Journal of Dynamic Systems,
Measurement, and Control, 111(2), 232-237.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Lipeng Chen is now perusing
his Ph.D. degree at the School
of Computing in the University
of Leeds, UK. Previously, he
received the M.E. degree in con-
trol theory and control engineer-
ing from the Northeastern Uni-
versity, Shenyang, China in 2015.
His research focuses on robotic
manipulation and grasping, phys-
ical human-robot collaboration, etc.

Luis F. C. Figueredo is a Marie-
Sktodowska Curie Action research
fellow at the University of Leeds.
Previously, he was a post-doctoral
researcher at Federal University
of Minas Gerais, Brazil. He com-
pleted his Ph.D. in 2016 being
awarded for the Best Ph.D. Thesis
in Engeering at the University of
Brasilia, Brazil. He also worked
at MERS group at CSAIL-MIT in
2013-14 and received awards for
robotic demonstrations at ICAPS-
14 and IROS-14.



Autonomous Robots (2020) 44:1249-1269 1269

Mehmet R. Dogar is a University
Academic Fellow at the School
of Computing at the University of
Leeds, where he leads the Robotic
Manipulation Lab. Previously, he
was a postdoctoral researcher at
CSAIL, MIT. He received his Ph.D.
from the Robotics Institute at
Carnegie Mellon University. His
research focuses on autonomous
robotic manipulation. He
envisions a future where robots
autonomously perform
complex manipulation tasks in
human environments.

@ Springer



